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Irreversibility in dynamical phases and transitions
Daniel S. Seara 1,2✉, Benjamin B. Machta1,2✉ & Michael P. Murrell 1,2,3✉

Living and non-living active matter consumes energy at the microscopic scale to drive

emergent, macroscopic behavior including traveling waves and coherent oscillations. Recent

work has characterized non-equilibrium systems by their total energy dissipation, but little

has been said about how dissipation manifests in distinct spatiotemporal patterns. We

introduce a measure of irreversibility we term the entropy production factor to quantify how

time reversal symmetry is broken in field theories across scales. We use this scalar,

dimensionless function to characterize a dynamical phase transition in simulations of the

Brusselator, a prototypical biochemically motivated non-linear oscillator. We measure the

total energetic cost of establishing synchronized biochemical oscillations while simulta-

neously quantifying the distribution of irreversibility across spatiotemporal frequencies.
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In many-body systems, collective behavior that breaks time-
reversal symmetry can emerge due to the consumption of
energy by the individual constituents1–3. In biological, engi-

neered, and other naturally out of equilibrium processes, entropy
must be produced so as to bias the system in a forward direc-
tion4–9. This microscopic breaking of time reversal symmetry can
manifest at different length and time scales in different ways. For
example, bulk order parameters in complex reactions can switch
from exhibiting incoherent, disordered behavior to stable static
patterns10,11 or traveling waves of excitation12,13 that break time
reversal symmetry in both time and space simply by altering
the strength of the microscopic driving force. Recent advances
in stochastic thermodynamics have highlighted entropy produc-
tion as a quantity to measure a system’s distance from equili-
brium14–19. While much work has been done investigating the
critical behavior of entropy production at continuous and dis-
continuous phase transitions20–28, dynamical phase transitions in
spatially extended systems have only recently been investigated,
and to date no non-analytic behavior in the entropy production
has been observed29,30.

To address this, we introduce what we term the entropy pro-
duction factor (EPF), a dimensionless function of frequency and
wavevector that measures time reversal symmetry breaking in a
system’s spatial and temporal dynamics. The EPF is a strictly
non-negative quantity that is identically zero at equilibrium,
quantifying how far individual modes are from equilibrium.
Integrating the EPF produces a lower bound on the entropy
production rate (EPR) of a system. We illustrate how to calculate
the EPF directly from data using the analytically tractable
example of Gaussian fields obeying partly relaxational dynamics
supplemented with out of equilibrium coupling31. We then turn
to the Brusselator reaction-diffusion model for spatiotemporal
biochemical oscillations to study the connections between pattern
formation and irreversibility. As the Brusselator undergoes a
Hopf bifurcation far from equilibrium, its behavior transitions
from incoherent and localized to coordinated and system-
spanning oscillations in a discontinuous transition. The EPF
quantifies the shift in irreversibility from high to low wave-
number as this transition occurs, but the EPR is indistinguishable
from that of the well-mixed Brusselator where synchronization
cannot occur. Importantly, the EPF can be calculated in any
number of spatial dimensions, making it broadly applicable to a
wide variety of data types, from particle tracking to 3+1
dimensional microscopy time series.

Results
Entropy production factor derivation. Consider a system
described by a set of M real, random variables obeying some
possibly unknown dynamics. A specific trajectory of the system
over a total time T is given by X = {Xi(t)∣t ∈ [0, T]}. Given an
ensemble of stationary trajectories, the average EPR, _S, is bounded
by5,6,32

_S≥ lim
T!1

1
T
DKL P½X� k P½eX�� �

;

DKL P½X� k P½eX�� � ¼ log
P½X�
P½eX�
 !* +

P½X�

ð1Þ

where we have set kB = 1 throughout and DKL denotes the
Kullback–Leibler divergence which measures the distinguish-
ability between two probability distributions. P X½ � and P½eX� are
the steady-state probability distribution functionals of observing
the path X(t) of length T and the probability of observing its
reverse path, respectively. Therefore, the KL divergence in Eq. (1)
measures the statistical irreversibility of a signal, and saturates the

bound when X contains all relevant, non-equilibrium degrees of
freedom.

We further bound the irreversibility itself by assuming the
paths obey a Gaussian distribution. Writing the Fourier transform
of Xi(t) as xi(ω), where ω is the temporal frequency, and writing
the column vector xðωÞ ¼ x1ðωÞ; x2ðωÞ; ¼ð ÞT :

P½xðωÞ� ¼ 1
Z

Y
ωn

exp � 1
2T

xyC�1x

� �
; ð2Þ

where x† denotes the conjugate transpose of the vector x
evaluated at the discrete frequencies ωn = 2πnT−1. C(ωn) is the
covariance matrix in Fourier space with elements CijðωnÞ ¼
xiðωnÞxjð�ωnÞh iT�1, and Z is the partition function. The
expression for P½ex� is identical but with C−1(ωn) → C−1(−ωn)
[see Supplementary Note 1]. Combining Eq. (1) with Eq. (2) and
taking T → ∞, we arrive at our main result:

_S ¼
Z

dω
2π

EðωÞ; EðωÞ ¼ 1
2

C�1ð�ωÞ � C�1ðωÞ� �
ijC

jiðωÞ:
ð3Þ

This defines the EPF, EðωÞ, which measures time reversal
symmetry breaking interactions between M ≥ 2 variables, while
integrating E gives _S. EðωÞ ¼ DKLðP½xðωÞ� jj P½exðωÞ�Þ measures
the Kullback–Leibler divergence between the joint distribution of
M modes at a single frequency ω. While this quantity does not
scale with trajectory length, the density of modes near a particular
frequency is related to the total trajectory time by Δω = 2πT−1.
Since ± ω modes must be complex conjugates of each other and
an overall average phase is prohibited by time translation
invariance, asymmetry between these distributions can only be
captured by relative phase relationships, quantified by their
correlation functions. E is large when one variable tends to lead
another in phase, implying a directed rotation between these
variables in the time domain.

As mentioned above, P[x(ω)] describes the dynamics of a non-
equilibrium steady state, and no reversal of external protocol is
assumed. Further, in writing an expression for P½exðωÞ�, we
assume that the observables are scalar, time-reversal symmetric
quantities, such as the chemical concentrations we analyze below.

The Gaussian assumption we make here makes Eq. (3) exact
only for systems obeying linear dynamics. Nevertheless, E is still
defined for non-linear systems, where the integrated E lower
bounds the true _S. To see this, consider projecting complex
dynamics onto Gaussian dynamics by choosing a data processing
procedure which preserves two point correlations but which
removes higher ones. This can be accomplished by multiplying
every frequency by an independent random phase — a post-
processing procedure which can be applied to individual
trajectories. Post-convolution, the integrated EPF is equal to the
KL divergence rate between forward and backwards rates. From
the data processing inequality, the KL divergence rate of the true
fields must be higher, so that the integrated EPF lower bounds the
true entropy production rate [see Supplementary Note 2]. In
addition to bounding the true _S, we expect the integral of E to be
a good approximation for the wide class of systems where
linearization is reasonable. Such Gaussian approximations are
starting points in many field theories, with higher order
interactions accounted for by adding anharmonic terms in the
action of Eq. (2). While this is not our focus here, we expect these
additional terms to systematically capture corrections to _S that do
not appear in Eq. (3). As Cii(ω) = Cii(−ω), the only contributions
to E come from the cross-covariances between the random
variables of interest. As such, this bound yields exactly 0 for a
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single variable even though higher order terms may contribute to
_S.
This formulation extends naturally to random fields. For M

random fields in d spatial dimensions, ϕ ¼ fϕiðx; tÞjt 2
½0;T�; x 2 Rdg, the EPR density, _s � _S=V where V is the system
volume, is:

_s ¼
Z

dω
2π

ddq

ð2πÞd Eðq;ωÞ;

Eðq;ωÞ ¼ 1
2

C�1ðq;�ωÞ � C�1ðq;ωÞ� �
ijC

jiðq;ωÞ:
ð4Þ

where Cij(q, ω) is the dynamic structure factor and Eðq;ωÞ is now
a function of wavevector q and frequency ω [see Supplementary
Note 1].

Even without an explicit, analytic expression for the structure
factor, C, we can estimate E from data. To use Eq. (4), we
consider data of N finite length trajectories of M variables over a
time T in d spatial dimensions. Each dimension has a length Li.
We create an estimate of the covariance matrix, eCðq;ωÞ, from
time-series using standard methods [see Methods]. These
measurements will inevitably contain noise that is not necessarily
time-reversal symmetric, even for an equilibrium system. Noise
due to thermal fluctuations and finite trajectory lengths in the
estimate of eC from a single experiment (N= 1) will systematically
bias our estimated E by ΔE ¼ MðM�1Þ

2 at each frequency and will
thereby introduce bias and variance in our measurement of _s. We
can simply remove the bias from our measured E, but to reduce
the variance, we smooth eC by component-wise convolution with
a multivariate Gaussian of width σ ¼ ðσq1 ; ¼ ; σqd ; σωÞ in

frequency space, giving Ĉ. This is equivalent to multiplying each
component of the time domain eCðr; tÞ by a Gaussian, cutting off
the noisy tails in the real space covariance functions at large lag
times. We then use Ĉ in Eq. (4) to create our final estimator for
the EPF, Ê, and thereby the EPR, _̂s. We calculate and remove the
bias in Ê and _̂s in all results below [see Methods]. Smoothing eC
with increasingly wide Gaussians in ω and q leads to a systematic
decrease in _̂s due to reduced amplitudes in eC (Supplementary
Notes 3 and 4, Supplementary Fig. 1).

To illustrate the information contained in E, its numerical
estimation, and the accuracy of _̂s, we analyze simulations of
coupled, one-dimensional Gaussian stochastic fields for which E
and _s can be calculated analytically. We then study simulations of
the reaction-diffusion Brusselator, a prototypical model for non-
linear biochemical oscillators, and use E to study how
irreversibility manifests at different time and length scales as
the system undergoes a Hopf bifurcation33.

Driven Gaussian fields. Consider two fields obeying Model A
dynamics31 with non-equilibrium driving parametrized by α:

∂tϕðx; tÞ ¼ �D
δF
δϕ

� αψ þ
ffiffiffiffiffiffi
2D

p
ξψ

∂tψðx; tÞ ¼ �D
δF
δψ

þ αϕþ
ffiffiffiffiffiffi
2D

p
ξϕ;

ð5Þ

where ξ(x, t) is Gaussian white noise with variance
ξiðx; tÞξjðx0; t0Þ	 
 ¼ δijδðx � x0Þδðt � t0Þ, D is a relaxation con-
stant, and δF=δϕ is the functional derivative with respect to ϕ of
the free energy F given by:

F ¼
Z

dx
r
2
ðϕ2 þ ψ2Þ þ 1

2
j∂xϕj2 þ j∂xψj2
� �� �

; ð6Þ

so that the fields have units of ℓ1/2 and r penalizes large
amplitudes.

The EPR density, _s, is calculated analytically in two ways. First,
we solve Eq. (1) directly using the Onsager–Machlup
functional for the path probability functional of ηðx; tÞ ¼
ϕðx; tÞ;ψðx; tÞð ÞT4,34. Second, the covariance matrices are
calculated analytically, used to find E through Eq. (4), and
integrated to find _s. Both cases give the same result for _s. The
result for both E and _s are [see Supplementary Note 5]:

EDGF ¼ 8α2ω2

ðω2 � ω2
0ðqÞÞ2 þ ð2Dðr þ q2ÞωÞ2 ; _sDGF ¼ α2

D
ffiffi
r

p : ð7Þ

We see that EDGF ≥ 0 and exhibits a peak at (q, ω) = (0, ω0(0)),

where ω0ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDðr þ q2ÞÞ2 þ α2

q
, indicating that the system is

driven at all length scales with a driving frequency of α,
dampened by an effective spring constant Dr. In addition, it is
clear that multiple combinations of α, r, and D can give the same
value for _s while E distinguishes between equally dissipative
trajectories in the shape and location of its peaks. In this way, E
gives information about the form of the underlying dynamics not
present in the total EPR. We note that EDGF is also recovered
using an appropriately modified version of the generalized
Harada–Sasa Relation introduced in 34 [see Supplementary
Note 6].

We perform simulations to assess how well E can be extracted
from time series data of fields [see methods for details]. The
estimated Ê shows excellent agreement with Eq. (7) (Fig. 1).
Integrating Ê gives _̂s, which also shows good agreement with _sDGF.
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Fig. 1 Entropy production rate and entropy production factor are well
estimated for driven Gaussian fields. a Snapshot of typical configurations
of both fields, ψ (blue solid line) and ϕ (orange dashed line) obeying Eq. (5)
for α = 7.5. b Subsection of a typical trajectory for one field for α = 7.5 in
dimensionless units. Colors indicate the value of the field at each point in
spacetime. c Ê for α = 7.5 averaged over N = 10 simulations. Contours
show level sets of EDGF. d Measured _s vs. α for simulations of total time
T = 50 and length L = 12.8. Red line shows the theoretical value, _sDGF.
Mean ± s.d. of _̂s given by black dots and shaded area. See Supplementary
Table 1 for all simulation parameters.
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Our estimator gives exact results for the driven Gaussian fields
because the true path probability functional for these fields is
Gaussian. In contrast, the complex patterns seen in nature arise from
systems obeying highly non-linear dynamics. For such dynamics,
our Gaussian approximation is no longer exact but provides a lower
bound on the total irreversibility. To investigate how irreversibility
correlates with pattern formation, we study simulations of the
Brusselator model for biochemical oscillations35. We begin by
describing the various dynamical phases of the equations of motion.
Next, we calculate E and _S for only the reactions before adding
diffusion to study the synchronized oscillations that arise in the one-
dimensional reaction-diffusion system.

Reaction-diffusion Brusselator. We use a reversible Brusselator
model30,35–37 with dynamics governed by the reaction equations:

A"
kþ1

k�1
X; Bþ X"

kþ2

k�2
Y þ C; 2X þ Y"

kþ3

k�3
3X; ð8Þ

where {A, B, C} are external chemical baths with fixed con-
centrations {a, b, c}, and all the reactions occur in a volume V
(Fig. 2a). The system is in equilibrium when the external chemical
baths and reaction rates obey bkþ2 k

þ
3 ¼ ck�2 k

�
3 . When this equality

is violated, the system is driven away from equilibrium and
exhibits cycles in the (X, Y) plane. Defining

Δμ ¼ log
bkþ2 k

þ
3

ck�2 k
�
3

� �
; ð9Þ

the Brusselator is at equilibrium when Δμ = 0 and is driven into
a non-equilibrium steady state when Δμ ≠ 0. We vary b and c to
change Δμ while keeping the product ðbkþ2 kþ3 Þðck�2 k�3 Þ ¼ 1,
keeping the rate at which reactions occur constant for all Δμ38.

As Δμ increases, the macroscopic version of Eq. (8) undergoes
dynamical phase transitions. For all Δμ, there exists a steady state
(Xss, Yss), the stability of which is determined by the relaxation
matrix, R [Supplementary Note 7]. The two eigenvalues of R, λ±,
divide the steady state into four classes33:

● λ± 2 R< 0 ! Stable attractor, no oscillations
● λ± 2 C; Re½λ± �< 0 ! Stable focus
● λ± 2 C; Re½λ± �> 0 ! Hopf Bifurcation, limit cycle
● λ± 2 R> 0 ! Unstable repeller

The eigenvalues undergo these changes as Δμ changes, allowing
us to consider Δμ as a bifurcation parameter. We define ΔμHB as
the value of Δμ where the macroscopic system undergoes the
Hopf bifurcation.

Non-equilibrium steady states are traditionally characterized
by their circulation in a phase space39–43. One may then question
how it is possible to detect non-equilibrium effects in the
Brusselator when the system’s steady state is a stable attractor
with no oscillatory component. While this is true for the
macroscopic dynamics used to derive λ±, we simulate a system
with finite numbers of molecules subject to fluctuations. These
stochastic fluctuations give rise to circulating dynamics, even
when the deterministic dynamics do not36. We see persistent
circulation in the (X, Y) plane when λ± 2 R< 0, with the vorticity
changing sign around Δμ = 0 (Supplementary Fig. 2).

In order to assess the accuracy of our estimated EPR, _̂S, we
calculate an estimate of the true EPR, _Strue, for a simulation of
Eq. (8) by calculating the exact entropy produced by each reaction
that occurs in the trajectory44, and then fitting a line to the

cumulative sum (Supplementary Fig. 3, Methods). We find that _̂S
significantly underestimates _Strue (note the logged axes in Fig. 2c)
due to the Brusselator’s hidden dynamics. In the Brusselator,
information is lost because the observed trajectories are coarse-
grained — they do not distinguish between reactions that take
place forward through the second reaction or backwards through
the third reaction in Eq. (8). These pathways would be
distinguishable if trajectory of B and C were also observable.

Our method relies purely on system dynamics to give _̂S. Eq. (1) is
true only if all microscopic details are captured by trajectories X. If
X is already coarse-grained, multiple microscopic trajectories will be
indistinguishable and Eq. (1) will underestimate the true entropy
production rate due to the data processing inequality 19,45,46.

In order to account for this, we recalculate _S by considering the
rate at which a given transition can occur as the sum over all
chemical reactions that give the same dynamics [see Methods].
For example, a transition from (X, Y)→ (X − 1, Y + 1) can occur
via reaction kþ2 or k�3 in the Brusselator, each of which produces a
different amount of entropy in general. Looking only in the (X, Y)
plane, it is impossible to tell which reaction took place. When
calculating the entropy produced by only the observable
dynamics, the rate of making the transition (X, Y)→ (X− 1, Y+ 1)
is kf ¼ kþ2 þ k�3 , while the rate of making the reverse transition is
kr ¼ k�2 þ kþ3 , and the entropy produced is log kf

kr
. This estimate

of the EPR, which we name _Sblind, is a coarse-graining of _Strue,
giving the relation _Sblind ≤ _Strue

47. We find that _Sblind shows

excellent agreement with _̂S, indicating that the Gaussian
approximation provides a good estimate for the observable
dynamics even when the system is highly non-linear.
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Fig. 2 _S and E for well-mixed Brusselator. a Typical trajectory in (X, Y) space for Δμ = 6.2. The occupation probability distribution is shown in blue, with
a subsection of a typical trajectory shown in black. The end of the trajectory is marked by the white circle. Inset shows the same information for the system
at equilibrium, where Δμ = 0, with the same colorbar as the main figure. b Ê for Δμ = [3.5, 5.3, 6.2] shown in green, orange, and purple, respectively.
Shaded area shows mean ± s.d. of Ê for N = 50 simulations. Ê is symmetric in ω, so only the positive axis is shown. Inset shows the same curves on a log-
log scale. c _S as a function of Δμ. Blue squares, orange triangles, and black circles show results for _Strue, _Sblind, and _̂S, respectively. Shaded area shows mean
± s.d. of _̂S for N = 50 simulations. Vertical red dashed line indicates ΔμHB. See Supplementary Table 2 for all simulation parameters.
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To further benchmark our estimator, we calculate _S using two
alternative methods, one based on the thermodynamic uncer-
tainty relation (TUR)7,48 and one based on measuring first
passage times (MFPT)49. The prior method measures a macro-
scopic current based on a weighted average of a system’s
trajectory, jd, and estimates the EPR using the TUR for diffusive
dynamics, _S≥ 2hj2di τobsVar½jd�

� ��1
, where 〈〉 and Var[] denote an

ensemble average and variance taken after an observation time
τobs17. The latter method requires measuring the MFPT of an
observable O constructed from the system’s dynamics to reach a
threshold that depends on a user-defined error tolerance. We
choose O and the threshold based on a drift-diffusion
approximation for the winding number of the Brusselator

(Supplementary Note 8). Similarly to _̂S, both of these methods
saturate to the true _S for systems obeying linear dynamics. As
such, they also approximate _Sblind, but we find that they provide a

looser bound than _̂S (Supplementary Fig. 4).
Prior to ΔμHB, both _̂S and _Sblind show a shift in their trends, but

_Strue does not. The smooth transition is due to the finite system
size we employ, and gets sharper as a power law as the system gets

larger (Fig. 3a). The power law exponent measured from _̂S is
nearly linear, consistent with the Gaussian assumption. The
exponent differs from that of _Sblind because our Gaussian
assumption breaks down at the high values of Δμ where the
maximum slope occurs (Fig. 3b).

The Hopf bifurcation for the Brusselator is supercritical23,
meaning the limit cycle grows continuously from the fixed point
when Δμ − ΔμHB ≪ 1. Further from the transition point, the
trajectory makes a discontinuous transition. At our resolution in
Δμ, this discontinuous transition is what underlies the shift in
_Sblind of the Brusselator. This same transition is present in _Strue,
but is difficult to detect numerically for reasons we explain here.
In the deterministic limit, _Strue ¼ Δμ JF � JRð Þ, where JF ¼ bhxikþ2
and JR ¼ chyik�2 are the forward and reverse fluxes for
transforming a B molecule into a C molecule. 〈x〉 is a constant,
but by numerically integrating the deterministic version for Eq.
(8), we observe a discontinuity in 〈y〉 above the Hopf bifurcation.
However, JF ≫ JR, obscuring the discontinuity in _Strue (Fig. 3c).
Upon coarse-graining, we have _Sblind ¼ Δμ JRblind � JFblind

� �
, with

JFblind ¼ bhxikþ2 þ hxi3k�3 and JR ¼ chyik�2 þ hxi2hyikþ3 . These
two terms are equal to each other for Δμ < ΔμHB and diverge
continuously when Δμ ⪆ ΔμHB, followed by the relatively large
discontinuity in JRblind (Fig. 3c, inset).

One gains further insight into the dynamics through the
transition by studying Ê (Fig. 2b). For Δμ < ΔμHB, Ê exhibits a

single peak that increases in amplitude while decreasing in
frequency as Δμ increases. Above ΔμHB, the peak frequency
makes a discontinuous jump, the magnitude of the peak grows
rapidly, and additional peaks at integer multiples of the peak
frequency appear due to the non-linear shape of the limit cycle
attractor. These harmonics are expected for dynamics on a non-
circular path. For Δμ < ΔμHB, the magnitude of the peak is
independent of system volume, while it gains a linear volume
dependence in the limit cycle. The width of the peak is also
maximized near the transition, reflecting a superposition of
frequencies present in the trajectories (Supplementary Fig. 5).

To investigate how dynamical phase transitions manifest in the
irreversibility of spatially extended systems, we simulate a
reaction-diffusion Brusselator on a one-dimensional periodic
lattice with L compartments, each with volume V, spaced a
distance h apart. The full set of reactions are now

Ai "
kþ1

k�1
Xi; Bi þ Xi "

kþ2

k�2
Yi þ Ci; 2Xi þ Yi "

kþ3

k�3
3Xi;

Xi !
dX

dX
Xiþ1; Yi !

dY

dY
Yiþ1; i 2 ½1; L�

ð10Þ

where dj = Dj/h2, and Dj is the diffusion constant of chemical
species j = {X, Y}. Qualitatively different dynamics occur based
on the ratio DX/DY. DX/DY ≪ 1 yields static Turing patterns10,29.
We focus on the DX/DY ≫ 1 regime which exhibits dynamic,
excitable waves. All values of {ai, bi, ci} are kept constant in each
compartment.

In the steady state, the reaction-diffusion Brusselator has the
same dynamics as the well mixed Brusselator, and so it is not
surprising that it’s EPR curve as a function of Δμ is similar
(Supplementary Fig. 6). However, unlike the well-mixed system,
the Hopf bifurcation signals the onset of qualitatively distinct
dynamics in the reaction-diffusion system. Prior to the Hopf
bifurcation, there are no coherent, spatial patterns in the system’s
dynamics (Fig. 4a). Above the Hopf bifurcation, system-spanning
waves begin to emerge that synchronize the oscillations across the
system (Fig. 4b). Following standard methods50,51, we define the
synchronization order parameter, 0 ≤ r < 1, using

reiψ ¼ 1
T

ZT
0

dt
1
M

XM
j¼1

eiθjðtÞ ð11Þ

where θj(t) is the phase of the oscillator at position xj and time t,M
is the number of oscillators (here, the number of lattice sites in our
simulation), and T is the temporal extent of the data [Methods]. ψ
denotes the overall phase, and r is close to zero in the asynchronous
phase and approaches one as the oscillators synchronize.
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Below ΔμHB, r is low and rapidly approaches one as the system
approaches the macroscopic bifurcation point (Fig. 4c). Like _S,
this transition occurs more sharply and closer to ΔμHB as the
system size increases, approaching the discontinuous transition to
the limit cycle behavior (Fig. 4c, inset)52. Throughout these
changes, the system is driven further from equilibrium, as
reflected in the increasing _̂s (Fig. 4d). The shift to collective
behavior is not reflected in _s as it is almost identical to _S found for
the well-mixed Brusselator (Supplementary Fig. 6). Instead, E
carries the signature of the dynamical phase transition. For
Δμ < ΔμHB, Ê shows peaks at high wavenumbers, reflecting that
irreversibility is occurring incoherently over short length scales.
Above ΔμHB, as the system shows synchronized oscillations, there
is an abrupt shift in the peaks of Ê to low q, indicating that this
collective behavior carries the majority of the irreversibility

(Fig. 5b,c). We also infer that the collective behavior is partially
composed of traveling waves due to the streaks in Ê (Fig. 5b). The
slight offset in the transition occurs for high values of Δμ < ΔμHB

where small regions synchronize for short periods of time, but
system wide oscillations are not observed (Supplementary Fig. 7).
Furthermore, the transition moves closer to the macroscopic
transition point with increased volume of the individual
compartments (Supplementary Fig. 7).

Discussion
Previous work has investigated the behavior of _S at thermo-
dynamic phase transitions with the work of 22 finding general
signatures of discontinuous phase transitions in _S which agree
with our results. While 26 found _S to have a discontinuity of its
first derivative with respect to Δμ in a slightly modified version of
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the well-mixed Brusselator, work on the same system presented
here did not find any non-analytic behavior in _Strue

30. We show
that a discontinuous phase transition exists in our model, but the
magnitude of the discontinuity is small and difficult to detect in
_Strue and is more easily seen in the coarse-grained _Sblind (Fig. 3).
Further, other spectral decompositions of the dissipation rate
either assume a particular form for the underlying dynamics27 or
require the measurement of a response function in addition to the
correlation function34, which is often difficult to perform in
experiments.

Here, we illustrated that the total irreversibility rate cannot
distinguish between the dynamical phase transitions in the well-
mixed and the spatially extended Brusselator (Supplementary
Fig. 6). While the EPR quantifies the emergence of oscillations,
the synchronization of the oscillations across space is only cap-
tured in E by its peak shifting from high to low wavenumber
(Fig. 5). By simulating systems with increasing compartment
volumes, this shift occurs closer to the macroscopic transition
point (Supplementary Fig. 7), similarly to the increasing sharp-
ness of the shift in _S for the well-mixed Brusselator (Fig. 3). Thus,
synchronization is intimately related to the emergence of oscil-
lations. We hypothesize that synchronization occurs due the
presence of a slow segment of the Brusselator dynamics (Fig. 2a).
The time spent in the slow portion of the dynamics allows
neighboring oscillators to reduce their relative phase through
their diffusive coupling, allowing previously out-of-sync lattice
sites to synchronize via the low-cost mechanism of diffusion. This
is further seen by the higher value of _sblind for the reaction-
diffusion Brusselator compared to _Sblind for the well-mixed
Brusselator when Δμ < ΔμHB, but not for Δμ > ΔμHB (Supple-
mentary Fig. 6). Once the oscillations are synchronized, diffusion
between lattice sites at equal concentrations is an equilibrium
process and does not produce entropy.

In summary, we have introduced the entropy production fac-
tor, E, a dimensionless, scalar function that quantifies irreversi-
bility in macroscopic, non-equilibrium dynamics by measuring
time-reversal symmetry breaking in the cross-covariances
between multiple variables. Integrating E gives a lower bound
on the net entropy production rate, _s. Calculating E does not
require knowledge about the form of the underlying dynamics
and is easy to calculate for many types of data, including both
random variables, such as the positions of driven colloidal par-
ticles53 (Supplementary Note 9, Supplementary Fig. 8 and 9,
Supplementary Table 5), and random fields, such as spatially
heterogeneous protein concentrations in cells54. Furthermore, we
stress that we are only able to resolve the irreversibility present in
the observable dynamics of our chemical example. As discussed
above, the presence of hidden dynamics will provide under-
estimates of irreversibility measured via Eq. (1) due to the data
processing inequality55. Using other observable information, such
as asymmetric transition rates56 or the ratio of populations in
observed states under stalled conditions46 in Markov jump pro-
cesses, can give tighter bounds on the entropy produced when
unobserved, dissipative processes are present. While the examples
considered here are simulations of 1+1 dimensional fields, there
is nothing inherently different in the methodology if one were to
analyze experimental data in 2 or 3 spatial dimensions, such as
the 3+1 dimensional time series data attained using lattice-light
sheet microscopy57.

In active matter, both living and non-living, the non-
equilibrium dissipation of energy manifests in both time and
space. With the method introduced here, compatible with widely-
used computational and experimental tools, we provide access to
these underexplored modes of irreversibility that drive complex
spatiotemporal dynamics.

Methods
Calculating E from data. Estimate E requires estimating frequency-space covar-
iance functions, or cross spectral densities (CSDs). Considering a set of M discrete,
real variables measured over time: {Xi(t)}, where t = Δt, …, T, with T = NΔt, and
i = 1, …, M indexes the variables, we estimate the CSD using the periodogram,

eCijðωnÞ ¼
1

N2 x
iðωnÞxjð�ωnÞ ð12Þ

where xiðωÞ ¼ FfXiðtÞ � XiðtÞh ig are the Fourier transforms of the centered
variables over the frequencies ωn = 2πnT−1 for n ¼ ½� N

2 ;
N
2 �.

The periodogram, is known to exhibit a systematic bias and considerable
variance in estimating the true CSD. Both of these issues can be resolved by

smoothing eCij
via convolution with a Gaussian with width σ. This is equivalent to

multiplying eCij
in the time domain by a Gaussian of width σ−1. We then define our

smoothed CSD as

Ĉ
ijðωnÞ ¼

X
ωμ

Δω
exp½�ðωμ � ωnÞ2=2σ2�ffiffiffiffiffiffiffiffiffiffi

2πσ2
p eCijðωμÞ ð13Þ

Once Ĉ is calculated, we then use the discrete version of Eq. (3) to estimate E.
The extension to higher-dimensional data is done as follows: taking into account
the spatial lattice on which the data is taken in Eq. (12), convolving the result with
a multivariate Gaussian in Eq. (13), and finally estimate _s using the discrete version
of Eq. (4). The choice of smoothing width, σ, should be guided by the maximum
curvature seen in the structure factor, Cij58.

Bias in Ê and _̂S. Our estimates of Ê and _̂S are biased. The bias is found by

calculating the expected value of _̂S for a system in equilibrium. To do this, we
assume that the true covariance function is Cij = δij and measurement noise plus
finite sampling time and rate gives rise to Gaussian noise in both the real and

complex parts of eCijðωÞ, obeying the symmetries required for Cij to be Hermitian.
We only cite the results here and refer the reader to Supplementary Note 4 for a full
derivation. The bias for random variables is

Ebias ¼
MðM � 1Þ

2

ffiffiffi
π

p
Tσ

ð14Þ

_Sbias ¼
MðM � 1Þ

2
ωmax

Tσ
ffiffiffi
π

p ; ð15Þ

where M is the number of variables, ωmax is the maximum frequency available, σ is
the width of the Gaussian used to smooth eCðωÞ, and T is the total time. The bias for
random fields is

Ebias ¼
MðM � 1Þ

2
þ 3M

8

� � ffiffiffi
π

p
Tσω

Yd
i¼1

ffiffiffi
π

p
Liσqi

ð16Þ

_sbias ¼
MðM � 1Þ

2
þ 3M

8

� �
ωmax

Tσω
ffiffiffi
π

p
Yd
i¼1

qmax
i

Liσqi
ffiffiffi
π

p ; ð17Þ

where Li is the length, qmax
i is the maximum wavenumber, and σqi is the width of

the Gaussian used to smooth eCðq;ωÞ in the ith spatial dimension.

Simulation details. To simulate the driven Gaussian fields, Eq. (5), we non-
dimensionalize the system of equations using a time scale τ = (Dr)−1 and length
scale λ = r−1/2. We use an Euler–Maruyama algorithm to simulate the dynamics
of the two fields on a periodic, one-dimensional lattice.

We simulate Eq. (8) using Gillespie’s algorithm59 to create a stochastic
trajectory through the (X, Y) phase plane with a well-mixed volume of V = 100.
We calculate the true _S of any specific trajectory z = {mj∣j = 1, …, N} as follows.
For each state m0 , there exists a probability per unit time of transitioning to a new

state m via a chemical reaction μ, denoted by WðμÞ
m;m0 . At steady state, the true

entropy produced is44

ΔStrue½z� ¼
XN
j¼1

ln
W

ðμjÞ
mj ;mj�1

W
ðμjÞ
mj�1 ;mj

ð18Þ

Note that ΔStrue is now itself a random variable that depends on the specific
trajectory. We estimate _Strue

	 

by fitting a line to an ensemble average of ΔStrue

(Supplementary Fig. 3), and compare that to _̂S. We calculate _Sblind by considering
the "rate" at which a transition can occur as the sum over all the rates that give rise
to the observed transition in (X, Y), i.e.,

ΔSblind ¼
XN
j¼1

ln

P
fμj jmj�1!mjg W

ðμjÞ
mj ;mj�1P

fμj jmj�1!mjg W
ðμjÞ
mj�1 ;mj

ð19Þ
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where
P

fμj jmj�1!mjg denotes a sum over all reaction pathways μ that give rise to the

transition mj−1 → mj. This procedure coarse-grains ΔStrue, giving ΔSblind ≤ ΔStrue47.
ΔSblind is the maximum entropy production that can be inferred by any method
that observes trajectories in (X, Y), but which does not have access to the reaction
pathways followed.

To simulate the reaction-diffusion Brusselator, Eq. (10), we take a
compartment-based approach60 where we treat each chemical species in each
compartment as a separate species, and treat diffusion events as additional

chemical reaction pathways. We nondimensionalize time by τ ¼ ðkþ1 Þ�1
and use a

Gillespie algorithm to simulate all reactions on a one-dimensional periodic lattice
with L sites.

See Supplementary Tables 1–5 for all simulation parameters used in each figure.

Synchronization order parameter. The synchronization order parameter given in
Eq. (11), r, is a function of the oscillator phase at every lattice site j at time t, θj(t).
In order to calculate θ from our data, we measure the oscillator’s phase with respect
to a trajectory’s mean position over time, namely

θjðtÞ ¼ arctan
YjðtÞ � hYi
XjðtÞ � hXi

 !
; ð20Þ

where the angle is taken over space and time. This phase is then used to calculate r
as given in Eq. (11).

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
The code used to calculate the EPR and EPF from data, as well as run all the simulations
in this study, can be found at https://github.com/lab-of-living-matter/freqent.
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