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We use the language of uninformative Bayesian prior choice to
study the selection of appropriately simple effective models. We
advocate for the prior which maximizes the mutual information
between parameters and predictions, learning as much as pos-
sible from limited data. When many parameters are poorly con-
strained by the available data, we find that this prior puts weight
only on boundaries of the parameter space. Thus, it selects a
lower-dimensional effective theory in a principled way, ignoring
irrelevant parameter directions. In the limit where there are suf-
ficient data to tightly constrain any number of parameters, this
reduces to the Jeffreys prior. However, we argue that this limit is
pathological when applied to the hyperribbon parameter mani-
folds generic in science, because it leads to dramatic dependence
on effects invisible to experiment.

effective theory | model selection | renormalization group | Bayesian prior
choice | information theory

Physicists prefer simple models not because nature is simple,
but because most of its complication is usually irrelevant.

Our most rigorous understanding of this idea comes from the
Wilsonian renormalization group (1–3), which describes mathe-
matically the process of zooming out and losing sight of micro-
scopic details. These details influence the effective theory which
describes macroscopic observables only through a few relevant
parameter combinations, such as the critical temperature or
the proton mass. The remaining irrelevant parameters can be
ignored, as they are neither constrained by past data nor useful
for predictions. Such models can now be understood as part of a
large class called sloppy models (4–14), whose usefulness relies
on a similar compression of a large microscopic parameter space
down to just a few relevant directions.

This justification for model simplicity is different from the
one more often discussed in statistics, motivated by the desire
to avoid overfitting (15–21). Since irrelevant parameters have an
almost invisible effect on predicted data, they cannot be excluded
on these grounds. Here we motivate their exclusion differently:
We show that simplifying a model can often allow it to extract
more information from a limited dataset and that this offers a
guide for choosing appropriate effective theories.

We phrase the question of model selection as part of the
choice of a Bayesian prior on some high-dimensional parameter
space. In a set of nested models, we can always move to a simpler
model by using a prior which is nonzero only on some subspace.
Recent work has suggested that interpretable effective models
are typically obtained by taking some parameters to their limit-
ing values, often 0 or ∞, thus restricting to lower-dimensional
boundaries of the parameter manifold (22).

Our setup is that we wish to learn about a theory by perform-
ing some experiment which produces data x ∈X . The theory and
the experiment are together described by a probability distribu-
tion p(x |θ), for each value of the theory’s parameters θ∈Θ. This
function encodes both the quality and the quantity of data to be
collected.

The mutual information (MI) between the parameters and
their expected data is defined as MI = I (X ; Θ) =S(Θ)−

S(Θ|X ), where S is the Shannon entropy (23). The MI thus
quantifies the information which can be learned about the
parameters by measuring the data, or equivalently, the informa-
tion about the data which can be encoded in the parameters (24,
25). Defining p?(θ) by maximizing this, we see the following:

i) The prior p?(θ) is almost always discrete (26–30), with weight
only on a finite number K of points or atoms (Figs. 1 and 2):
p?(θ) =

∑K
a=1 λaδ(θ− θa).

ii) When data are abundant, p?(θ) approaches the Jeffreys prior
pJ(θ) (31–33). As this continuum limit is approached, the
proper spacing of the atoms shrinks as a power law (Fig. 3).

iii) When data are scarce, most atoms lie on boundaries of
the parameter space, corresponding to effective models with
fewer parameters (Fig. 4). The resulting distribution of
weight along relevant directions is much more even than that
given by the Jeffreys prior (Fig. 5).

After some preliminaries, we demonstrate these properties in
three simple examples, each a stylized version of a realistic exper-
iment. To see the origin of discreteness, we study the bias of
an unfair coin and the value of a single variable corrupted with
Gaussian noise. To see how models of lower dimension arise,
we then study the problem of inferring decay rates in a sum of
exponentials.

Significance

Most physical theories are effective theories, descriptions at
the scale visible to our experiments which ignore microscopic
details. Seeking general ways to motivate such theories, we
find an information theory perspective: If we select the model
which can learn as much information as possible from the
data, then we are naturally led to a simpler model, by a path
independent of concerns about overfitting. This is encoded as
a Bayesian prior which is nonzero only on a subspace of the
original parameter space. We differ from earlier prior selection
work by not considering an infinite quantity of data. Having
finite data is always a limit on the resolution of an experiment,
and in our framework this selects how complicated a theory is
appropriate.
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Fig. 1. Optimal priors for the Bernoulli model (Eq. 1). Red lines indicate the
positions of delta functions in p?(θ), which are at the maxima of fKL(θ), Eq.
3. As m→∞ these coalesce into the Jeffreys prior pJ(θ).

In Supporting Information, we discuss the algorithms used for
finding p?(θ), and we apply some more traditional model selec-
tion tools to the sum of exponentials example.

Priors and Geometry
Bayes’ theorem tells us how to update our knowledge of θ
upon observing data x , from prior p(θ) to posterior p(θ|x ) =
p(x |θ) p(θ)/p(x ), where p(x ) =

∫
dθ p(θ) p(x |θ). In the absence

of better knowledge we must pick an uninformative prior which
codifies our ignorance. The naive choice of a flat prior p(θ) =
const. has undesirable features, in particular making p(x ) depend
on the choice of parameterization, through the measure dθ.

The Jeffreys prior pJ(θ) is invariant under changes of param-
eterization because it is constructed from some properties of the
experiment (34). This pJ(θ)∝

√
det gµν is, up to normalization,

the volume form arising from the Fisher information metric or
matrix (FIM):

gµν(~θ) =

∫
dx p(x |~θ) ∂ log p(x |~θ)

∂θµ
∂ log p(x |~θ)

∂θν
.

This Riemannian metric defines a reparameterization-invariant
distance between points, ds2 =

∑D
µ,ν=1 gµν dθ

µdθν . It mea-
sures the distinguishability of the data which θ and θ+ dθ are
expected to produce, in units of standard deviations. Repeating
an (identical and independently distributed) experiment m times
means considering pm(~x |θ) =

∏m
j=1p(xj |θ), which leads to met-

ric gm
µν(θ) =m gµν(θ). However, the factor mD/2 in the volume

is lost by normalizing pJ(θ). Thus, the Jeffreys prior depends on
the type of experiment, but not the quantity of data.

Bernardo defined a prior p?(θ) by maximizing the MI between
parameters Θ and the expected data Xm from m repetitions
and then a reference prior by taking the limit m→∞ (29, 31).
Under certain benign assumptions, this reference prior is exactly
the Jeffreys prior (31–33), providing an alternative justification
for pJ(θ).

We differ in taking seriously that the amount of data collected
is always finite.∗ Besides being physically unrealistic, the limit
m→∞ is pathological both for model selection and for prior

∗Interned for 5 y, John Kerrich flipped his coin only 104 times (35). With computers we
can do better, but even the Large Hadron Collider generated only about 1018 bits of
data (36).

choice. In this limit any number of parameters can be perfectly
inferred, justifying an arbitrarily complicated model. In addition,
in this limit the posterior p(θ|x ) becomes independent of any
smooth prior.†

Geometrically, the defining feature of sloppy models is that
they have a parameter manifold with hyperribbon structure (6–
9): There are some long directions (corresponding to d relevant,
or stiff, parameters) and many shorter directions (D − d irrel-
evant, or sloppy, parameter combinations). These lengths are
often estimated using the eigenvalues of gµν and have logarithms
that are roughly evenly spaced over many orders of magnitude
(4, 5). The effect of coarse graining is to shrink irrelevant direc-
tions (here using the technical meaning of irrelevant: a parame-
ter which shrinks under renormalization group flow) while leav-
ing relevant directions extended, producing a sloppy manifold (8,
14). By contrast, the limit m→∞ has the effect of expanding all
directions, thus erasing the distinction between directions longer
and shorter than the critical length scale of (approximately) 1 SD.

On such a hyperribbon, the Jeffreys prior has an undesirable
feature: Since it is constructed from the D-dimensional notion of
volume, its weight along the relevant directions always depends
on the volume of the D − d irrelevant directions. This gives it
extreme dependence on which irrelevant parameters are included
in the model.‡ The optimal prior p?(θ) avoids this dependence
because it is almost always discrete, at finite m .§ It puts weight on
a set of nearly distinguishable points, closely spaced along the rel-
evant directions, but ignoring the irrelevant ones. Yet being the
solution to a reparameterization-invariant optimization problem,
the prior p?(θ) retains this good feature of pJ(θ).

Maximizing the MI was originally done to calculate the capac-
ity of a communication channel, and we can borrow techniques
from rate-distortion theory here: The algorithms we use were
developed there (37, 38), and the discreteness we exploit was
discovered several times in engineering (26–28, 39). In statistics,
this problem is more often discussed as an equivalent minimax
problem (40). Discreteness was also observed in other minimax
problems (41–43) and later in directly maximizing MI (29, 30, 33,
44). However, it does not seem to have been seen as useful, and
none of these papers explicitly find discrete priors in dimension
D > 1, which is where we see attractive properties. Discreteness
has been useful, although for different reasons, in the idea of
rational inattention in economics (45, 46). There, market actors
have a finite bandwidth for news, and this drives them to make
discrete choices despite all the dynamics being continuous. Rate-
distortion theory has also been useful in several areas of biology
(47–49), and discreteness emerges in a recent theoretical model
of the immune system (50).

We view this procedure of constructing the optimal prior as
a form of model selection, picking out the subspace of Θ on
which p?(θ) has support. This depends on the likelihood func-
tion p(x |θ) and the data space X , but not on the observed data
x . In this regard it is closer to Jeffreys’ perspective on prior selec-
tion than to tools like the information criteria and Bayes factors,

†For simplicity we consider only regular models; i.e., we assume all parameters are struc-
turally identifiable.
‡See Fig. 5 for a demonstration of this point. For another example, consider a parameter
manifold Θ which is a cone, with Fisher metric ds2 = (50 dϑ)2 +ϑ2dΩ2

n/4: There is
one relevant direction ϑ∈ [0, 1] of length L = 50, and there are n irrelevant directions
forming a sphere of diameter ϑ. Then the prior on ϑ alone implied by pJ(~θ) is p(ϑ) =

(n + 1)ϑn, putting most of the weight near ϑ= 1, dramatically so if n = D− d is large.
But since only the relevant direction is visible to our experiment, the regionϑ≈ 0 ought
to be treated similarly to ϑ≈ 1. The prior p?(~θ) has this property.

§We offer both numerical and analytic arguments for discreteness below. The exception
to discreteness is that if there is an exact continuous symmetry, p?(θ) will be constant
along it. For example, if our Gaussian model Eq. 2 is placed on a circle (identifying both
θ∼ θ+ 1 and x∼ x + 1), then the optimum prior is a constant.
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which are used at the stage of fitting to data. We discuss this dif-
ference at length in Model Selection from Data.

One-Parameter Examples
We begin with some problems with a single bounded parame-
ter, of length L in the Fisher metric. These tractable cases illus-
trate the generic behavior along either short (irrelevant) or long
(relevant, L� 1) parameter directions in higher-dimensional
examples.

Our first example is the Bernoulli problem, in which we wish
to determine the probability θ∈ [0, 1] that an unfair coin gives
heads, using the data from m trials. It is sufficient to record the
total number of heads x , which occurs with probability

p(x |θ) =
m!

x !(m − x )!
θx (1− θ)m−x . [1]

This gives gθθ = m
θ(1−θ) , thus pJ(θ) = [π

√
θ(1− θ)]−1

, and

proper parameter space length L=
∫ √

ds2 =π
√
m .

In the extreme case m = 1, the optimal prior is two delta func-
tions, p?(θ) = 1

2
δ(θ) + 1

2
δ(θ− 1), and MI = log 2, exactly one bit

(29, 30, 33). Before an experiment that will run only once, this
places equal weight on both outcomes; afterward it records the
outcome. As m increases, weight is moved from the boundary
onto interior points, which increase in number and ultimately
approach the smooth pJ(θ) (Figs. 1 and 3A).

Similar behavior is seen in a second example, in which we mea-
sure one real number x , normally distributed with known σ about
the parameter θ∈ [0, 1]:

p(x |θ) = 1√
2πσ

e−(x−θ)2/2σ2

. [2]

Repeated measurements are equivalent to smaller σ (by σ→
σ/
√
m), so we fix m = 1 here. The Fisher metric is gθθ = 1/σ2,

and thus L= 1/σ. An optimal prior is shown in Fig. 2; in Fig. 5A
it is shown along with its implied distribution of expected data.
This p(x ) is similar to that implied by the Jeffreys prior, here
pJ(θ) = 1.

We calculated p?(θ) numerically in two ways. After discretiz-
ing both θ and x , we can use the Blahut–Arimoto (BA) algo-
rithm (37, 38). This converges to the global maximum, which is a
discrete distribution (Fig. 2). Alternatively, using our knowledge
that p?(θ) is discrete, we can instead adjust the positions θa and
weights λa of a finite number of atoms. See Algorithms for more
details.

To see analytically why discreteness arises, we write the MI as

MI = I (X ; Θ) =

∫
dθ p(θ) fKL(θ), [3]

Fig. 2. Convergence of the BA algorithm. This is for the one-parameter
Gaussian model Eq. 2 with L = 10 (comparable to m = 10 in Fig. 1). Right
shows θ discretized into 10 times as many points, but pτ (θ) clearly converges
to the same 5 delta functions.

A

C

B

Fig. 3. Behavior of p?(θ) with increasing Fisher length. A and B show
the atoms of p?(θ) for the two one-dimensional models as L is increased
(i.e., we perform more repetitions m or have smaller noise σ). C shows
the scaling of the MI (in bits) with the number of atoms K. The dashed
line is the bound MI≤ log K, and the solid line is the scaling law MI∼
3/4 log K.

fKL(θ) =DKL [p(x |θ)‖p(x )]=

∫
dx p(x |θ) log

p(x |θ)
p(x )

,

where DKL is the Kullback–Leibler divergence.¶ Maximizing MI
over all functions p(θ) with

∫
dθ p(θ) = 1 gives fKL(θ)= const.

But the maximizing function will not, in general, obey p(θ)≥ 0.
Subject to this inequality p?(θ) must satisfy

{p?(θ)> 0, fKL(θ) = MI} or {p?(θ) = 0, fKL(θ)<MI}

at every θ. With finite data fKL(θ)−MI must be an analytic func-
tion of θ and therefore must be smooth with a finite number of
zeros, corresponding to the atoms of p?(θ) (Fig. 1). See refs. 28,
29, and 46 for related arguments for discreteness and refs. 41–43
for other approaches.

The number of atoms occurring in p?(θ) increases as the data
improve. For K atoms there is an absolute bound MI≤ logK ,
saturated if they are perfectly distinguishable. In Fig. 3C we

¶The function fKL(θ) is sometimes called the Bayes risk, as it quantifies how poorly the
prior will perform if θ turns out to be correct. One of the problems equivalent to max-
imizing the MI (40) is the minimax problem for this (Fig. 1):

max
p(θ)

I(X; Θ) = min
p(θ)

max
θ

fKL(θ) = min
q(x)

max
p(θ)

∫
dθ p(θ) DKL [p(x|θ)‖q(x)].

The distributions we call expected data p(x) are also known as Bayes strategies, i.e.,
distributions on X which are the convolution of the likelihood p(x|θ) with some prior
p(θ). The optimal q(x) from this third formulation (with minq(x) . . .) can be shown to
be such a distribution (40).
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observe that the optimal priors instead approach a line MI→
ζ logK , with slope ζ ≈ 0.75. At large L the length of parame-
ter space is proportional to the number of distinguishable points,
and hence MI→ logL. Together these imply K ∼L1/ζ , and so
the average number density of atoms grows as

ρ0 =K/L∼L1/ζ−1≈L1/3, L� 1. [4]

Thus, the proper spacing between atoms shrinks to zero in
the limit of infinite data; i.e., neighboring atoms cease to be
distinguishable.

To derive this scaling law analytically, in a related paper (51)
we consider a field theory for the number density of atoms,
in which the entropy density (omitting numerical factors) is
S = const.− e−ρ

2

[ρ4(ρ′)
2

+ 1]. From this we find ζ = 3/4, which
is consistent with both examples presented above.

Multiparameter Example
In the examples above, p?(θ) concentrates weight on the edges
of its allowed domain when data are scarce (i.e., when m is
small or σ is large, and hence L is small). We next turn to
a multiparameter model in which some parameter combina-
tions are ill-constrained and where edges correspond to reduc-
ed models.

The physical picture is that we wish to determine the compo-
sition of an unknown radioactive source, from data of xt Geiger
counter clicks at some times t . As parameters we have the quan-
tities Aµ and decay constants kµ of isotopes µ. The probability
of observing xt should be a Poisson distribution (of mean yt )
at each time, but we approximate these by Gaussians of fixed σ
to write#

p(~x |~y)∝
∏

t
e−(xt−yt )

2/2σ2

, yt =
∑

µ
Aµe

−kµt . [5]

We can see the essential behavior with just two isotopes in fixed
quantities: Aµ = 1

2
, and thus yt = 1

2
(e−k1t + e−k2t). Measuring

at only two times t1 and t2, we almost have a 2D version of Eq. 2,
in which the center of the distribution ~y = (y1, y2) plays the role
of θ above. The mapping between ~k and ~y is shown in Fig. 4A, fix-
ing t2/t1 = e . The FIM is proportional to the ordinary Euclidean
metric for ~y , but not for ~k :

gµν(~k) =
1

σ2

∑
t

∂yt
∂kµ

∂yt
∂kν

⇐⇒ gst(~y) =
1

σ2
δst . [6]

Thus, the Jeffreys prior is a constant on the allowed region of the
~y plane.

Then we proceed to find the optimum p?(~y) for this model,
shown in Fig. 4B for various values of σ. When σ is large,
this has delta functions only in two of the corners, allowing
only k1, k2 = 0 and k1, k2 =∞. As σ is decreased, new atoms
appear first along the lower boundary (corresponding to the
one-dimensional model where k1 = k2) and then along the other
boundaries. At sufficiently small σ, atoms start filling in the (2D)
interior.

To show this progression in Fig. 4C, we define Ωr as the total
weight on all edges of dimension r and an effective dimension-
ality deff =

∑D
r=1 r Ωr . This increases smoothly from 0 toward

D = 2 as the data improve.
At medium values of σ, the prior p?(~y) almost ignores the

width of the parameter manifold and cares mostly about its
length (L+ =

√
2/σ along the diagonal). This behavior is very dif-

ferent from that of the Jeffreys prior: In Fig. 5B we demonstrate

#Using a normal distribution of fixed σ here is what allows the metric in Eq. 6 to be so
simple. However, the qualitative behavior from the Poisson distribution is very similar.

A

C

B

Fig. 4. Parameters and priors for the exponential model (Eq. 5). A shows
the area of the~y plane covered by all decay constants k1, k2≥ 0. B shows the
positions of the delta functions of the optimal prior p?(~y) for several values
of σ, with colors indicating the dimensionality r at each point. C shows the
proportion of weight on these dimensionalities.

this by plotting the distributions of data implied by these two pri-
ors. Jeffreys puts almost no weight near the ends of the long (i.e.,
stiff or relevant) parameter’s range because the (sloppy or irrel-
evant) width happens to be even narrower there than in the mid-
dle. By contrast, our effective model puts significant weight on
each end, much like the one-parameter model in Fig. 5A.

The difference between one and two parameters being rele-
vant (in Fig. 4B) is very roughly σ= 1/7 to σ= 1/50, a factor 7
in Fisher length and thus a factor 50 in the number of repetitions
m—perhaps the difference between a week’s data and a year’s.
These numbers are artificially small to demonstrate the appear-
ance of models away from the boundary: More realistic models
often have manifold lengths spread over many orders of mag-
nitude (5, 8) and thus have some parameters inaccessible even
with centuries of data. To measure these we need a qualitatively
different experiment, justifying a different effective theory.

The one-dimensional model along the lower edge of Fig. 4A
is the effective theory with equal decay constants. This remains
true if we allow more parameters k3, k4, . . . in Eq. 5, and p?(~y)

will still place a similar weight there.‖ Measuring xt also at later
times t3, t4, . . . will add more thin directions to the manifold (7),
but the one-dimensional boundary corresponding to equal decay
constants will still have significant weight. The fact that such
edges give human-readable simpler models (unlike arbitrary sub-
manifolds) was the original motivation for preferring them in ref.

‖If we have more parameters than measurements, then the model must be singular. In
fact the exponential model of Fig. 4 is already slightly singular, since k1↔ k2 does not
change the data; we could cure this by restricting to k2 ≥ k1, or by working with~y, to
obtain a regular model.
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A

B

Fig. 5. Distributions of expected data p(x) from different priors. A is the
one-parameter Gaussian model, with L = 10. B projects the two-parameter
exponential model onto the y1 + y2 direction, for σ= 1/7 where the per-
pendicular direction should be irrelevant. The length of the relevant direc-
tion is about the same as the one-parameter case: L+ = 7

√
2. Note that the

distribution of expected data p(x+) from the Jeffreys prior here is quite dif-
ferent, with almost no weight at the ends of the range (0 and

√
2), because

this prior still weights the area and not the length.

22, and it is very interesting that our optimization procedure has
the same preference.∗∗

Discussion
While the three examples we have studied here are very simple,
they demonstrate a principled way of selecting optimal effective
theories, especially in high-dimensional settings. Following ref.
45, we may call this rational ignorance.

The prior p?(θ) which encodes this selection is the maximally
uninformative prior, in the sense of leaving maximum headroom
for learning from data. But its construction depends on the like-
lihood function p(x |θ), and thus it contains knowledge about the
experiment through which we are probing nature. The Jeffreys
prior pJ(θ) also depends on the experiment, but more weakly: It
is independent of the number of repetitions m , precisely because
it is the limit m→∞ of the optimal prior (32, 33).

Under either of these prescriptions, performing a second
experiment may necessitate a change in the prior, leading to a
change in the posterior not described by Bayes’ theorem. If the
second experiment is different from the first one, then chang-
ing to the Jeffreys prior for the combined experiment (and then
applying Bayes’ rule just once) will have this effect (55, 56).††

Our prescription differs from that of Jeffreys in also regarding
more repetitions of an identical experiment as being different.

∗∗Edges of the parameter manifold give simpler models not only in the sense of hav-
ing fewer parameters, but also in an algorithmic sense. For example, the Michaelis–
Menten model is analytically solvable (52) in a limit which corresponds to a manifold
boundary (53). Stable linear dynamical systems of order n are model boundaries of
order n + 1 systems (54). Taking some parameter combinations to the extreme can
lock spins into Kadanoff blocks (53).

††This view is natural in the objective Bayesian tradition, but see refs. 57–60 for
alternatives.

Many experiments would have much higher resolution if they
could be repeated for all eternity. The fact that they cannot is
an important limit on the accuracy of our knowledge, and our
proposal treats this limitation on the same footing as the rest of
the specification of the experiment.

Keeping m finite is where we differ from earlier work on prior
selection. Bernardo’s reference prior (31) maximizes the same
MI, but always in the m→∞ limit where it gives a smooth ana-
lytically tractable function. Using I (X ; Θ) to quantify what can
be learned from an experiment goes back to Lindley (24). That
finite information implies a discrete distribution was known at
least since refs. 26 and 27. What has been overlooked is that this
discreteness is useful for avoiding a problem with the Jeffreys
prior on the hyperribbon parameter spaces generic in science (5):
Because it weights the irrelevant parameter volume, the Jeffreys
prior has strong dependence on microscopic effects invisible to
experiment. The limit m→∞ has erased the divide between
relevant and irrelevant parameters, by throwing away the natu-
ral length scale on the parameter manifold. By contrast, p?(θ)
retains discreteness at roughly this scale, allowing it to ignore
irrelevant directions. Along a relevant parameter direction this
discreteness is no worse than rounding θ to as many digits as we
can hope to measure, and we showed that in fact the spacing of
atoms decreases faster than our accuracy improves.

Model selection is more often studied not as part of prior
selection, but at the stage of fitting the parameters to data.
From noisy data, one is tempted to fit a model which is more
complicated than reality; avoiding such overfitting improves
predictions. The Akaike information criterion (AIC), Bayesian
information criterion (BIC) (15, 61), and related criteria (19, 20,
62–64) are subleading terms of various measures in the m→∞
limit, in which all (nonsingular) parameters of the true model
can be accurately measured. Techniques like minimum descrip-
tion length (MDL), normalized maximum likelihood (NML),
and cross-validation (62, 65, 66) need not take this limit, but all
are applied after seeing the data. They favor minimally flexible
models close to the data seen, while our procedure favors one
answer which can distinguish as many different outcomes as pos-
sible. It is curious that both approaches can point toward sim-
plicity. We explore this contrast in more detail in Model Selection
from Data.‡‡

Being discrete, the prior p?(θ) is very likely to exclude the true
value of the parameter, if such a θtrue ∈Θ exists. This is not a
flaw: The spirit of effective theory is to focus on what is relevant
for describing the data, deliberately ignoring microscopic effects
which we know to exist (67). Thus, the same effective theory can
emerge from different microscopic physics [as in the universality
of critical points describing phase transitions (68)]. The relevant
degrees of freedom are often quasiparticles [such as the Cooper
pairs of superconductivity (69)] which do not exist in the micro-
scopic theory, but give a natural and simple description at the
scale being observed. We argued here for such simplicity not on
the grounds of the difficulty of simulating 1023 electrons or of
human limitations, but based on the natural measure of informa-
tion learned.

There is similar simplicity to be found outside of physics. For
example, the Michaelis–Menten law for enzyme kinetics (70)
is derived as a limit in which only the ratios of some reaction
rates matter and is useful regardless of the underlying system. In
more complicated systems which we cannot solve by hand and,
for which the symmetries and scaling arguments used in physics

‡‡Model selection usually starts from a list of models to be compared, in our language
a list of submanifolds of Θ. We can also consider maximizing mutual information in
this setting, rather than with an unconstrained function p(θ), and unsurprisingly we
observe a similar preference for highly flexible simpler models. This is also discussed in
Eq. S3.
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cannot be applied, we hope that our information approach may
be useful for identifying the appropriately detailed theory.
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