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Supplementary Text

1 Introduction

This document contains relevant background and computational details to accompany the main

text. Section 2 provides a pedagogical overview of the information theoretic tools used to

quantify distinguishability. Section 3 discusses an application of this formalism to a model

of stochastic motion providing details of the calculation underlying fig. 2 in the main text. In

addition, it gives an asymptotic analysis of the scaling of the FIM’s eigenvalues in the limit

of late time observations. Sections 4–7 discuss the Ising model. Section 4 defines the 13-

parameter Ising model introduced in the main text. Section 5 outlines the numerical techniques

for measuring the FIM, and gives a scaling argument that explains its spectrum before coarsen-

ing. Section 6 extends this analysis to the coarsened case. Section 7 gives details on the Monte

Carlo techniques used, with emphasis on this paper’s implementation of the ‘Compatible Monte

Carlo’ first used in (24).

This document also includes a supplement to fig. 1 from the main text (fig. S1). This fig-

ure provides additional examples of seemingly disparate models whose FIM’s, when fit to their

natural data, exhibit a characteristic sloppy spectrum. These include a differential equation

model of a circadian rhythm where parameters describe reaction rates and saturation coeffi-

cients (11, 29), a variational wave-function problem where parameters are Jastrow factors that

specify the ground-state wave function (12), and a relaxation oscillator where parameters gen-

eralize the van der Pol system describing oscillations between two almost stable states (28). In

addition we include a model from engineering, for fine-tuning the beam of a particle accelerator

(the Energy Recovery Linac) where parameters describe the positions of magnets used to shape

the beam. This last model was implemented using TAO (the Tool for Accelerator Optics (30))

and we thank Georg Hoffstaetter, David Sagan, and Christopher Mayes for the use of their code.
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2 Information geometry and the Fisher Information matrix

This section gives an overview of the information theoretic approach used throughout (16, 31,

32) motivated by the following questions: how different are two probability distributions, P1(x)

and P2(x), and what is an appropriate measure of distance between them? Can one test the

hypothesis that a set of independent data points {x1, x2, ..., xN

} (unbeknownst to us generated

by P1) was instead generated by P2? The probability that P1 would have generated the data is

given by its likelihood:

P1({x1, x2, ...xN

}) =
Y

i

P1(xi

) = exp

 
X

i

logP1(xi

)

!
(S1)

To determine which of two candidate models more probably generated this sequence of data,

one considers the log likelihood ratio:

�({x1, x2, ...xN

}) = log

✓
P1({x1, x2, ...xN

})
P2({x1, x2, ...xN

})
◆

(S2)

If � is large and positive (negative) than the data suggests P1 (P2). Alternatively, if � is close

to zero than either model could be valid and the data is inconclusive. How much data is needed

before one should expect that one model distinguishes itself? In a given distribution, � is a

stochastic variable. However, one can define the expectation value for �(x) in distribution P1,

giving the log likelihood per sample that an ensemble drawn from P1 could have instead been

drawn from P2.

This defines the Kullback-Liebler Divergence, D
KL

, a statistical measure of how distin-

guishable P1 is from P2 from its data x (32, 33)

D
KL

(P1||P2) =

X

x

P1(x)�(x) =
X

x

P1(x) log

✓
P1(x)

P2(x)

◆
. (S3)
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Because D
KL

does not necessarily satisfy D
KL

(P1||P2) = D
KL

(P2||P1), it is not a mathemat-

ically proper distance metric1. However, D
KL

becomes symmetric for two ‘nearby’ models.

For a continuously parameterized set of models P
✓

where ✓ is a set of N parameters ✓µ, the

infinitesimal D
KL

between models P
✓

and P
✓+�✓

is2

D
KL

(P
✓

, P
✓+�✓

) = g
µ⌫

�✓µ�✓⌫ +O�✓3, (S4)

where g
µ⌫

is the Fisher Information Matrix (FIM), given by 3

g
µ⌫

(P
✓

) = �
X

x

P
✓

(x)
@

@✓µ
@

@✓⌫
logP

✓

(x). (S5)

The quadratic form of the KL-divergence at short distances motivates using the FIM as

a metric on parameter space. The FIM is symmetric, positive-definite, and transforms like a

covariant rank-2 tensor under parameter transformations, endowing it with all the properties of

a Riemannian metric, the study of which is known as information geometry (16). In fact, the

FIM is the unique natural Riemannian metric that is consistent with the additional structure that

each point specifies a probability distribution4.
1A distance measure should also satisfy some sort of generalized triangle inequality- at the very least D(A,B)+

D(B,C) � D(A,C) which is also not necessarily satisfied here.
2It is an interesting exercise to show that there is no term linear in �✓. The crucial step uses that P

✓

is a
probability distributions so that @

µ

P
x

P

✓

(x) = 0.
3Although the KL-divergence is a common measure of statistical distinguishability among probability distribu-

tions, it is not unique. In fact it is a member of a broader class of divergences known as the f-divergences, which
take the form D

f

(P1, P2) =
P

x

P1(x)f

⇣
P2(x)
P1(x)

⌘
for some function f(t) that is convex and satisfies f(1) = 0. The

KL-divergence therefore corresponds to the choice f(t) = � log(t). Other common choices are f(t) = 2(1�p
t),

corresponding to the Hellinger Distance, and f(t) = |t� 1|, corresponding to the total variation distance. For our
purposes, this distinction is unimportant: the Fisher Information is the lowest order contribution to any f-divergence
for infinitesimally separated probability distributions.

4Riemannian metrics have more structure than other metric spaces since the metric tensor defines an inner
product on the tangent space at each point on the manifold. The FIM is the only inner product that is invariant
under specific probabilistically important mappings. The basic argument considers partitions on the domain of the
probability distribution, known as Markov mappings. Requiring that the inner product be invariant under these
mappings is a rigid constraint that is only satisfied by the FIM (34, 35)
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Information geometry provides a framework for understanding more generalized Bayesian

inference. It gives an immediate derivation of Jeffreys’ ‘uninformative’ prior (36): the invari-

ant volume element in any Riemannian geometry is given by
p

det (g)d✓1d✓2 . . . d✓N . In a

Bayesian inference scheme, choosing a prior on parameter space equal to
p
det (g)/Z ensures

that model predictions are reparameterization invariant. The normalization constant, Z, is the

invariant volume of the manifold that quantifies the amount of information expected to be gained

from a single measurement of x.

The FIM is well defined for any models that predict stochastic data. The next sub-sections

derive the form of the FIM for two special cases used in this work, the case of Gaussian models,

and the case of exponential families familiar from statistical physics. The similarity of parame-

ter space structure in these seemingly very different classes of models suggests that it is not an

artifact of the particular choice of stochastic model employed.

2.1 The metric of a Gaussian model

Nonlinear least squares models output a vector of data, yi0 (for 1 < i < M ), that is generated

assuming that the observations yi are normally distributed with widths �i around prediction

~y0(✓). The fitting ‘cost’ or sum of squared residuals is proportional to the negative log likelihood

(plus a constant), hence the probability distribution of data is

P
✓

(~y) ⇠ exp

 
�
X

i

(yi � yi0(✓))
2/2�i2

!
. (S6)

Defining the Jacobian between parameters and scaled data as

J
iµ

=

1

�i

@yi0(✓)

@✓µ
, (S7)
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the Fisher Information Matrix for least squares problems is given by5 (13, 14)

g
µ⌫

=

X

i

J
iµ

J
i⌫

. (S8)

The Euclidean distance between nearby points in prediction space

P
(�y

i

)

2
=

P
i,µ,⌫

⇣
@y

i

@✓

µ�✓µ @y

i

@✓

⌫�✓⌫
⌘

= g
µ⌫

�✓µ�✓⌫
(S9)

is the metric tensor contracted with corresponding displacements �✓µ in parameter space. Thus

the FIM has a geometric interpretation: distance is locally the same as that measured by em-

bedding the model in the space of scaled data according to the mapping y0(✓) (it is induced by

the Euclidian metric in data space). This metric was shown to be sloppy in seventeen models

from the systems biology literature (11) and in several other contexts. See Fig. S1 and (12).

2.2 The metric of a Statistical Mechanical Model

Exponential models familiar from statistical mechanics are defined by a parameter set ✓ depen-

dent Hamiltonian H that assigns an energy to every possible configuration x. Each parameter

✓µ controls the relative weighting of some function of the configuration, �
µ

(x), which together

define the probability distribution on configurations through the following (with temperature
5This assumes that the uncertainty �

i does not depend on the parameters, and that errors are diagonal. Both of
these assumptions seem reasonable for a wide class of models if measurement error dominates. The more general
case is still tractable, but less transparent
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and Boltzmann’s constant set to 1)

P (x|✓) = exp(�H
✓

(x))/Z,

Z(✓) = exp(�F (✓)) =
P
x

exp(�H
✓

(x)),

H
✓

(x) =

P
µ

✓µ�
µ

(x)

(S10)

Here F is the Helmholtz free energy. Many models can be put into this exponential form.

For example, the 2d Ising model of section 4 has spins s
i,j

= ±1 on a square L ⇥ L lattice

with the configuration, x = {s
i,j

}, being the state of all spins. The magnetic field, ✓0 =

h multiplies �0({si,j}) =

P
i,j

s
i,j

, and the nearest neighbor couplings, ✓01 = ✓10 = �J

multiplies �1({si,j}) =

P
i,j

s
i,j

s
i+1,j + s

i,j

s
i,j+1. This form is chosen for convenience in

calculating the metric, which is written (21, 23, 37)6

g
µ⌫

= h�@
µ

@
⌫

log(P (x))i ,
= h@

µ

@
⌫

H(x)i+ @
µ

@
⌫

log(z),

= @
µ

@
⌫

log(z) = �@
µ

@
⌫

F.

(S11)

In the last equation we have taken advantage of the fact that the Hamiltonian is linear in param-

eters ✓µ so that h@
µ

@
⌫

H(x)i = 0.
6Several seemingly reasonable metrics can be defined for systems in statistical mechanics and all give similar

results in most circumstances (23). Most differences occur either for systems not in a true thermodynamic (N
large) limit, or for systems near a critical point. As far as we are aware, Crooks (21) was the first to stress that the
one used here can be derived from information theoretic principles, perhaps making it the most ‘natural’ choice.
Crooks showed (21) that when using this metric ‘length’ has an interesting connection to dissipation by way of the
Jarzynski equality (38).
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3 A Continuum Limit: Diffusion

In a ‘microscopic’ model of stochastic motion on a discrete lattice of sites j, parameters ✓µ, for

�N  µ  N describe the probability that in a discrete time step a particle will transition7

from site j to site j + µ. Particles are initially at the origin and measurement data consists of

the number of particles ⇢
⌧

(j) at some later time ⌧ .

‘Microscopic’ measurements of model parameters are taken after starting with the initial

probability distribution ⇢0(j) = �
j,0 and observing the new distribution after one time step,

⇢1(j). This distribution is given by

⇢1(j) = ✓j. (S12)

Assuming that the measurement uncertainty of the number of particles at each site is Gaussian,

with width8 �
meas

= 1. The FIM on the parameter space defined in equations S7 and S8

becomes
J
i,µ

= @
µ

⇢1(i) = �
i,µ

,

g
µ⌫

=

P
i

J
i,µ

J
i,⌫

,

= �
µ⌫

.

(S13)

This metric has 2N + 1 eigenvalues each with value � = 1. All of the parameters in this model

are measurable with equal accuracy. This of course changes as one examines data that is in the

form of densities measured after multiple time steps as discussed next.
7If

P
✓

↵

6= 1, then particles do not just hop but maybe created or destroyed with net rate R =

P
✓

↵

� 1. ✓µ
then describes the probability that if an isolated particle is at site j at time ⌧ , then one will be at site j + µ at time
⌧ + 1.

8One could carry out a more complicated calculation assuming uncertainty comes from the stochastic nature of
the model itself, but with many particles, this approach would yield similar but less transparent results. Changing
the measurement uncertainty from 1 to �

meas

will multiply all calculated metrics by a trivial factor of 1/�2
meas

which is omitted for clarity.
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3.1 Coarsening the diffusion equation by observing at long times

To calculate the density of particles at position j and time ⌧ , ⇢
⌧

(j), it is useful to introduce the

Fourier transform of the hopping rates, as well as the Fourier transform of the particle density

at time ⌧

˜✓k =
NP

µ=�N

e�ikµ✓µ,

⇢̃k
⌧

=

1P
j=�1

e�ikj⇢
⌧

(j),

⇢
⌧

(j) = 1
2⇡

⇡R
�⇡

dkeikj ⇢̃k
⌧

.

(S14)

In a time step the density distribution is convolved by the hopping rates. In Fourier space, this

is simply written as9

⇢̃k
⌧

=

˜✓k⇢̃k
⌧�1. (S15)

Initially, all particles are at the origin ⇢0(j) = �
j,0, hence ⇢̃k0 ⌘ 1 and

⇢̃k
⌧

= (

˜✓k)⌧ ,

⇢
⌧

(j) =

1
2⇡

⇡R
�⇡

dkeikj(˜✓k)⌧ .
(S16)

The Jacobian and metric at time ⌧ can now be written

J⌧

jµ

= @
µ

⇢
⌧

(j) = ⌧

2⇡

⇡R
�⇡

dkeik(j�µ)
(

˜✓k)⌧�1,

g⌧
µ⌫

=

⌧

2

2⇡

⇡R
�⇡

dkeik(µ�⌫)
(

˜✓k)⌧�1
(

˜✓�k

)

⌧�1.
(S17)

Note that the metric now depends on ✓. The preceding formulae were used to calculate the

sloppy spectrum of the fig. 2. After many steps, the three stiffest eigendirections of g
µ⌫

become

the three terms in the diffusion equation as discussed next.
9This is due to the convolution theorem. For example, see (39)
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The late time behavior of g⌧
µ⌫

is dominated by small k values appearing in the integrand of

equation S17. For small values of k

˜✓k = (1 +R)(1� ikV � k

2

2 (D + V 2
)) +O(k3

)

= (1 +R) exp(�ikV �D k

2

2 ) +O(k3
),

R =

P
µ

✓µ � 1

V =

1
1+R

P
µ

µ✓µ,

D =

1
1+R

P
µ

µ2✓µ � V 2.

(S18)

In the preceding, note that the first two equations are identical up to second order in k, R is the

particle creation rate, V is the drift, and D is the diffusion constant. For the case where the drift

V = 0 and particle creation rate R = 0, at late times

g⌧
µ⌫

⇡ ⌧

2

2⇡

1R
�1

dkeik(µ�⌫)e�D⌧k

2

⇠ ⌧

2

(D⌧)1/2
e�(µ�⌫)2/4D⌧ .

(S19)

Expanding this in powers of the small parameter (µ� ⌫)2/D⌧ gives

g⌧
µ⌫

⇠ ⌧ 2((D⌧)�1/2 � (D⌧)�3/2
(µ� ⌫)2/4 + · · · )

= ⌧ 2
1P
n=0

(�1)n(µ�⌫)2n

n!(4D⌧)n+1/2 .
(S20)

Each term in the series contributes a single new non-zero eigenvalue which scales like

�
n

⇠ ⌧ 2
✓
D⌧

N2

◆�n�1/2

, n � 0. (S21)

The corresponding eigenvectors are best understood by considering their projection onto

the observables and are proportional to the left singular vectors of J as v
L,n

= (1/�
n

)J
iµ

vµ
n

.
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These are exactly the Hermite polynomials multiplied by a Gaussian with width 2� =

p
D⌧ .

Thus at late times, when the Gaussian goes to a constant in the range �N to N , the stiffest

eigendirection is proportional to the non-conservation of particle number R =

P
µ

✓µ � 1, the

second measures drift V =

1
1+R

P
µ

µ✓µ, and next is the diffusion constant, D. The next terms

are less familiar; those past n = 2 never appear in a continuum description, because they are

always harder to observe than the diffusion constant by a factor of the ratio of the observation

scale (
p
D⌧ ) to the microscopic scale (N ) raised to a negative integer power. It is not possible

for the diffusion constant, as defined here, to be zero while any higher cumulants are non-zero,

explaining why though drift and the diffusion constant both appear in continuum limits, the

physical parameter that describes the third cumulant does not. The next eigendirection measures

the skew of the resulting density distribution, while the next one measures the distribution’s

kurtosis, and so on. It is worth noting that careful observation of a particular ✓µ, somewhat

analogous to knowing the bond-angle of a water molecule, would give very little insight on the

relevant observables. The exact eigenvalues, measured at steps ⌧ = 1–7 are plotted in fig. 2 of

the main text for an N = 3 (seven parameter) model where ✓µ = 1/7 for all µ.

4 A critical point: The Ising model

The 2d square lattice Ising model discussed here has lattice sites 1 < i, j < L, and degrees of

freedom s
i,j

taking the values of ±1. The probability of observing a particular configuration

on the whole lattice (denoted by {s
i,j

}) is defined by a Hamiltonian H {s
i,j

} that assigns each

configuration of spins an energy (equation S10). The usual nearest neighbor Ising model has

two parameters: a coupling strength J , and a magnetic field h defined through the equation

H({s
i,j

}) = J
X

i,j

(s
ij

s
ij+1 + s

ij

s
i+1j) + h

X

i,j

s
ij

. (S22)
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The Ising model discussed in the main text generalizes this to a larger dimensional space of

possible models by including in its Hamiltonian the magnetic field ✓0, the usual nearest neighbor

coupling term, and 12 other nearby couplings parameterized by ✓↵� . Vertical and horizontal

couplings are also allowed to be different. In the form of equation S10

H(x) =
P
↵,�

✓↵��
↵�

({s
i,j

}) + ✓h�
h

({s
i,j

}) ,

�

↵�

({s
i,j

}) = P
i,j

s
ij

s
i+↵j+�

,

�

h

({s
i,j

}) = P
i,j

s
ij

.

(S23)

As discussed next, the FIM of this model is calculated along the line through parameter space

that describes the usual Ising model (✓01 = ✓10 = J and ✓↵� = 0 otherwise) with no magnetic

field (✓h = 0).

5 Measuring the Ising metric

From equation S11, the metric for the generalized Ising model, evaluated at the nearest-neighbor

standard zero-field point, can be written in terms of expectation values of observables as follows

(except where necessary, the indices ↵� and h are condensed into a single µ)

g
µ⌫

= @
µ

@
⌫

log z = h�
µ

�

⌫

i � h�
µ

i h�
⌫

i . (S24)

Furthermore, given a configuration x = {s
i,j

}, �
µ

(x) is just a particular two point correlation

function (or the total sum of spins for �

h

) 10. The Wolff algorithm (40) was employed to

generate an ensemble of configurations x
p

= {s
i,j

}
p

, for 1 < p < M , for systems with L =

10
�

h

({s
i,j

}) =

P
i,j

s

i,j

is efficiently calculated for a given configuration {s
i,j

}. �

↵�

({s
i,j

}) is less triv-
ial: one defines the translated lattice s

0
i,j

(↵,�) = s

i+↵,j+�

, in terms of which we write �

↵�

({s
i,j

}) =P
i,j

s

i,j

s

0
i,j

(↵,�).
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64 to estimate the distribution defined in equation S24. (Results were checked against exact

enumeration of all possible states on lattices up to L = 4.) Thus, for an ensemble of M lattice

configurations x
i

g
µ⌫

=

1

M2 �M

MX

p,q=1,p 6=q

�

µ

(x
p

)�

⌫

(x
p

)� �

µ

(x
q

)�

⌫

(x
p

). (S25)

The results are plotted in supplementary Fig. S2. Away from the critical point in the high

temperature phase (small �J), the results seem somewhat analogous to those found for the

diffusion equation viewed at its microscopic scale. All of the parameter eigendirections that

control two spin couplings (✓↵�) are roughly of similar distinguishability. However, as the crit-

ical point is approached, the system becomes extremely sensitive both to ✓h and to a certain

combination of the ✓↵� parameters. This divergence has been previously shown for the contin-

uum Ising universality class (23) and for the nearest neighbor Ising model (41). As discussed

in the next section, these two metric eigenvalues diverge with the scaling of the susceptibility

(� ⇠ ⇠7/4, whose eigenvector is ✓h) and specific heat (C ⇠ log(⇠), whose eigenvector is a

combination of ✓↵� proportional to the gradient of the critical temperature, @Tc
@✓

↵� ). From an

information theoretic point of view, these two parameter combinations seem to become partic-

ularly easy to measure near the critical point because the system’s behavior becomes extremely

sensitive to changes in field and temperature. The behavior of these two eigenvalues seems to

have no parallel in the diffusion equation viewed at its microscopic scale.

5.1 Scaling analysis of the eigenvalue spectrum

Monte Carlo results were also analyzed with renormalization group (RG) techniques focusing

on the critical region, close to the RG fixed point ✓0. After an RG transformation that reduces

lengths by a factor of b, the remaining degrees of freedom are described by an effective theory

13



with parameters ✓0 related to the original ones by the relationship ✓0µ � ✓µ0 = T µ

⌫

(✓⌫ � ✓⌫0)

where11 T has left eigenvectors and eigenvalues given by eL
↵,µ

and by↵ . It is convenient to

switch to the so-called scaling variables, u
↵

=

P
µ

eL
↵,µ

✓µ, which have the property that under

a renormalization group transformation

u0
↵

= by↵u
↵

. (S26)

It is also convenient to separate the free energy into a singular part and an analytic part so that

F (✓) = Af s

(u
↵

(✓)) + Afa

(u
↵

(✓)),

f s

= u
d/2y1
1 U(r0, ..., r↵),

r
↵

= u
↵

/u
y↵/y1
1 .

(S27)

Here functions f are free energy densities, A is the system size and fa and U are both analytic

functions of their arguments. Notice that by construction the variables r do not change under

an RG transformation: the rescaling of component variables u
↵

and u1 cancel. The FIM can be
11
✓

0µ � ✓

µ

0 = T

µ

⌫

(✓

⌫ � ✓

⌫

0 ) is strictly true only if the parameters span the space of possible Ising Hamiltonians,
but the analysis holds for g

µ⌫

on the space of the original parameters provided the ✓

0 span all possible models,
which is assumed in this analysis. Said differently, there is no need for T to be square, and it is sufficient for the
analysis presented above to assume that T is 13 by infinite dimensional.
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similarly divided into two pieces

g
µ⌫

= gs
µ⌫

+ ga
µ⌫

= �A@
µ

@
⌫

f s � A@
µ

@
⌫

fa,

gs
µ⌫

= A
P

↵,�

(

@r↵
@✓

µ

@r�

@✓

⌫ )(
@

@r

↵
@

@r

�U)
= A

P
↵,�

(

@u↵
@✓

µ

@u�

@✓

⌫ )u
�(y↵+y��d)/y1
1 (

@

@r

↵
@

@r

�U)
= A

P
↵,�

(

@u↵
@✓

µ

@u�

@✓

⌫ )(
@

@r

↵
@

@r

�U)⇠y↵+y��d,

ga
µ⌫

= A
P

↵,�

(

@u↵
@✓

µ

@u�

@✓

⌫ )
@

@u↵

@

@u�
fa

(S28)

where ⇠ is the correlation length, which diverges like u
�1/y1
1 . By using the dimensionless r

variables for analysis of gs
µ⌫

, the singular behavior is isolated and expressed in powers of ⇠.

Now fa is by assumption an analytic function at the critical point, and the coordinate changes

u
↵

(

~✓) are analytic there, so ga
µ⌫

will have eigenvalues that are all of the same order of magnitude,

given by the area A:

�a

i

⇠ A. (S29)

The singular behavior of gs
µ⌫

as the correlation length ⇠ ! 1 at the critical point controls its

eigenvalues. As shown in Appendix A, its eigenvalues scale as

�s

i

⇠ A⇠2yi�d. (S30)

Hence the singular piece will dominate wherever 2y
i

� d � 0. In the 2d Ising model, this is

true for the magnetic field as it becomes the largest eigenvector e0 = ✓h (with y
h

= 15/8) along

with e1 = @
µ

u1 whose RG exponent is y1 = 1 (in the latter case 2y
i

� d = 0 so there is a

logarithmic divergence, as with the Ising model’s specific heat). The remaining eigenvectors of
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g
µ⌫

are dominated by analytic contributions. These analytic contributions, just as in the diffu-

sion equation viewed at its fundamental scale, cause the corresponding eigenvalues to cluster

together at a characteristic scale and not exhibit sloppiness (though not necessarily to be exactly

the identity). This analysis agrees with the Monte Carlo results plotted in fig. S2.

6 Measuring the Ising metric after coarsening

The FIM after n steps of coarsening is g
µ⌫

= �h@
µ

@
⌫

log (P (xn

))i where xn

= {s
i,j

}for {i,j} in level n.

The levels are defined as follows: If n is even then {i, j} is in level n iff i/2n/2 and j/2n/2 are

both integers. If n is odd than {i, j} is in level n if and only if {i, j} is in level n � 1 and

(i+ j)/2n/2+1 is an integer12. The mapping to level n from level 0 (giving the configuration of

retained subset of spins) is denoted13 as xn

= Cn

(x). It will be useful to write P (xn

) in terms

of a restricted partition function

P (xn

) =

˜Z(xn

)/Z,

˜Z(xn

) =

P
x

exp(�H(x))�(Cn

(x) = xn

).
(S31)

Here ˜Z(xn

) is the coarse-grained partition function conditioned on the sub-lattice at level n

taking the value xn, summing over the remaining degrees of freedom. The expectation value of

an operator defined at level 0 over configurations which coarsen to the same configuration xn

will be denoted as

{Q}
x

n =

P
x

Q(x)�(Cn

(x) = xn

) exp(�H(x))

˜Z(xn

)

. (S32)

12The first level is thus a checkerboard, the second has only even sites, the third has a checkerboard of even sites,
etc.

13The mapping C

n

(x) here simply discards all of the spins that do not remain at level N , leaving an L/2

n/2 ⇥
L/2

n/2 square lattice for even N and a rotated ‘diamond’ lattice for odd N . However, this formalism would also
apply to other schemes, such as the commonly used block-spin procedure.
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˜Z(xn

) can be treated like a partition function in the usual way. In particular, it is possible to

take parameter derivatives of the log of ˜Z(xn

) yielding familiar equations for cumulants

�@
µ

log(

˜Z(xn

)) = {�µ}
x

n

@
µ

@
⌫

log(

˜Z(xn

)) = {�µ

�

⌫}
x

n � {�µ}
x

n {�⌫}
x

n .
(S33)

The calculation will also use nested brackets wherein an outer triangular bracket refers to an

expectation value over microscopic configurations and inner curly brackets denote an expecta-

tion value in the set of configurations that coarsen to the same xn. Importantly, a single curly

bracket nested in a triangular bracket does not affect expectation values, as every micro state x

appears the same number of times in total. However, the presence of two curly brackets in the

same one does. For example:

h{�µ

�

⌫}
x

ni = h�µ

�

⌫i
h{�µ}

x

n {�⌫}
x

ni 6= h�µ

�

⌫i
(S34)

With these the FIM can be written as

gn
µ⌫

= �@
µ

@
⌫

⌦
log (P (xn

))

↵

= @
µ

@
⌫

log(Z)� ⌦
@
µ

@
⌫

log(

˜Z(Cn

(x)))
↵

= g
µ⌫

� ⌦�
�

µ

�

⌫

 
C

n(x)

↵
+

⌦�
�

µ

 
C

n(x)

�
�

⌫

 
C

n(x)

↵

=

⌦�
�

µ

 
C

n(x)

�
�

⌫

 
C

n(x)

↵ � ⌦�
�

µ

 
C

n(x)

↵⌦�
�

⌫

 
C

n(x)

↵
.

(S35)

Going from the first to the second line uses equation S31, going from the second to the third

uses equation S33 and going from the third to the fourth uses equation S34. The quantity
⌦�

�

µ

 
C

n(x)

�
�

⌫

 
C

n(x)

↵
can be measured by taking each member of an ensemble, x

q

, and gen-
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erating a sub-ensemble of x0
q,r

according to the distribution defined by

P (x0
q,r

|x
q

) =

P
x

exp(�H(x))�(Cn

(x0
q,r

) = Cn

(x
q

))

˜Z(Cn

(x
q

)))

. (S36)

Techniques for generating this ensemble, using a form of ‘Compatible Monte Carlo’ (24) are

discussed in section 7. From an ensemble of M configurations, with x
q

taken from the ensemble

of full lattice configurations, and x
q,r

from the ensemble given by P (x0
q,r

|x
q

) for each x
q

, the

metric becomes

gn
µ⌫

=

1
(M)(M 02�M

0)

q=M r,s=M

0P
q,r,s=1r 6=s

⇣
�

µ

(x0
q,r

)�

⌫

(x0
q,s

) � 1
M�1

MP
p=1 p 6=q

�

µ

(x0
q,r

)�

⌫

(x0
p,s

)

⌘
.

(S37)

The results of this Monte Carlo are presented for a 64 ⇥ 64 system at its critical point in

fig. 3 of the main text. The analytic corrections to scaling are reduced under coarse-graining,

revealing a sloppy spectrum of marginal and irrelevant metric eigenvalues. These irrelevant and

marginal eigenvalues continue to behave much as the eigenvalues of the metric in the diffusion

equation, becoming progressively less important under coarsening with characteristic eigenval-

ues. The large eigenvalues are dominated by singular corrections and do not become smaller

under coarsening, presumably because they are measured by their collective effects on the large

scale behavior measured from large distance correlations.

6.1 Eigenvalue spectrum after coarse-graining

The scaling of the FIM’s eigenvalues after coarsening can be estimated by using an RG-like

procedure that uses the following steps: (a) discarding the information in certain degrees of

freedom, (b) constructing an effective Hamiltonian for the remaining degrees of freedom in a

new parameter basis, (c) repeating the analysis for the metric’s eigenvalues in the parameter

18



coordinates of this new effective Hamiltonian, and (d) transforming back into the original co-

ordinates. It is helpful to contrast this approach to a usual RG calculation for a lattice Ising

model. In a usual RG calculation, information about certain degrees of freedom is discarded as

in (a) and, just as in (b), an effective theory is built that describes the behavior of the remaining

degrees of freedom. The approach described below departs from this usual picture in that the

goal is not to find this effective theory, but instead to calculate parameter sensitivities of the

original microscopic theory. To this end, steps (c) and (d) are added; the effective theory is used

only as an intermediate in calculating parameter sensitivities of the original model.

After coarse-graining n times, each observation yields only the spins {i, j} remaining at

level n, xn

= {s
i,j

}
���
{i,j} in level n

. The probability of a given configuration of these spins xn can

be written in terms of a renormalized model as is typical in RG

P (xn

) =

exp (�Hn

(xn

))

Z(An, un

)

, (S38)

where Hn is an effective Hamiltonian describing just those spins that are observable after n

coarse-graining steps. Hn has new parameters that can be expressed in terms of the scaling

variables defined in equation S26 with un

↵

= by↵nu
↵

. In addition, the area A of the system, in

lattice spacings, is reduced to14 An

= b�dnA, @un

↵

/@✓µ = by↵@u
↵

/@✓µ.

After rescaling, the entropy of the model is smaller by an amount �Sn from the original

model’s entropy. It is customary in RG analysis to subtract this constant from the Hamiltonian,

so as to preserve the free energy of the system after rescaling:

F n

= F n,s

+ F n,a

+�Sn

= F s

+ F a

= F (S39)

The new model’s Hamiltonian is still linear in new parameters, allowing us to use the algebra
14here, b =

p
2, d = 2
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of equation S11 if we remove the constant �S from the new Hamiltonian. This would, of

course, be an identical model, since the addition of a constant to the free energy does not change

any observables. Now expressing the metric for the new observables in terms of the original

parameters yields

gn
µ⌫

(✓) = @
µ

@
⌫

(F n,s

+ F n,a

) = @
µ

@
⌫

(F s

+ F a ��S). (S40)

Analyzing the singular and analytic contributions to the FIM separately

gs,n
µ⌫

= @
µ

@
⌫

F n,s

= @
µ

@
⌫

F s

= gs
µ⌫

,

ga,n
µ⌫

= @
µ

@
⌫

F n,a

= b�dnA@
µ

@
⌫

fn,a

= b�dnA@u

n
↵

@✓

µ

@u

n
�

@✓

⌫ (
@

@u

n
↵

@

@u

n
�
fn,a

)

= A
P

↵,�

b(y↵+y��d)n
(

@u↵
@✓

µ

@u�

@✓

⌫ )(
@

@u↵

@

@u�
fa

)

(S41)

The singular piece of the metric is maintained exactly because the singular part of the free

energy is preserved after an RG step. The implication is that the singular part of the free energy

contains long wave-length information. On the other hand, the analytic piece is smaller by

@
µ

@
⌫

�Sn. The matrix (

@u↵
@✓

µ

@u�

@✓

⌫ )(
@

@u↵

@

@u�
fa

) should be smoothly varying, with n, depending

only the un which vary only small amount with n near the RG fixed point. Importantly, all of

its eigenvalues should continue to take a characteristic value. Thus, after rescaling n times (see

equations S29, S30 and Appendix A)

�n,s

i

⇠ A(⇠)2yi�d,

�n,a

i

⇠ Abn(2yi�d).
(S42)

To ensure that the Fisher information is strictly decreasing in every direction upon coarsen-
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ing15, ga
µ⌫

must be negative semidefinite in the subspace of scaling variables where 2y
i

� d > 0.

For these relevant directions, �n

i

⇠ A⇠2yi�d � Ab2yi�dn, with i = 0, 1. Here, the second term

only becomes significant when bn ⇠ ⇠ (i.e. when the lattice spacing is comparable to the cor-

relation length). For irrelevant directions, or relevant ones with 0 < 2y
i

< d (corresponding to

i � 2 in the Ising model), the analytic piece will eventually dominate as the critical point is ap-

proached, yielding �
i

⇠ Ab2yi�d. These results are in quantitative agreement with those plotted

in fig. 3 of the main text assuming that the variables project onto irrelevant and marginal scaling

variables with leading dimensions of y = 0 (blue line in fig. 3 of main text), y = �2 (green line

in fig. 3 of the main text) and y = �4 (purple line in fig. 3 of the main text) consistent with the

theoretical predictions for the irrelevant eigenvalue spectrum made in (42).

This shrinkage of the FIM is reparameterization invariant in an important way. Although a

coordinate system can always be chosen in which the metric is locally the identity, the shrink-

age, which can be seen in any coordinate system, quantifies the contraction of the invariant

distance between nearby points as observables are coarsened. For example, if we choose a co-

ordinate system in which the metric is the identity when examining microscopic observables,

we find that the metric eigenvalues become widely spread after coarsening16.

It is helpful to contrast the results of this information geometry analysis to those of a more

standard RG one. Both can be used to explain the experimental findings of universality: a

wide class of microscopic models have identical macroscopic behavior. In an RG picture, one

considers a hypothetical large dimensional space of possible Hamiltonians that includes micro-

scopically disparate systems (for example including both ferromagnets and binary fluids). As
15In each coarsening step g

n

µ⌫

� g

n+1
µ⌫

must be a positive semidefinite matrix. This is because no parameter
combinations can be more measurable from a subset of the data available at level n than from its entirety.

16Least-Squares models that do not have a concept of coarsening still have a reparameterization invariant mani-
festation of sloppiness (13, 14). These models are typically finite in extent, at least in most directions and contain
’edges’ where some metric eigenvalues are zero and where parameters take extreme values (for example a rate
constant being either zero or infinity). Although a coordinate change can locally set the metric to the identity, the
reparameterization invariant shape of the manifold has a ‘hyper-ribbon’ structure, with a geometric hierarchy of
widths. It is unknown if the Ising model has a similar structure on coarsening.
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the renormalization group proceeds the Hamiltonians of their effective models flow towards the

same saddle point. The Hamiltonian of this saddle point thus describes the effective interactions

of coarsened degrees of freedom. This explains how binary fluids and ferromagnets could have

similar effective models for the coarsened observables.

This same hypothetical large dimensional space of Hamiltonians can be considered from

an information theory perspective, by adding step (c), calculating the Fisher Information for

the effective Hamiltonian and (d), transforming back to microscopic coordinates. Information

geometry clarifies that the microscopic Hamiltonians describing binary fluids and ferromagnets

produce indistinguishable results for coarsened variables. Although the parameter space dis-

tance between microscopic models for binary fluids and ferromagnets is quite large, the ‘proper

distance’ between them defined through the FIM rapidly vanishes upon coarsening. Models for

ferromagnets and binary fluids (for which t and h values are identical) differ from each other

only along sloppy directions and hence their long-wavelength behaviors become nearly identi-

cal. The evolution of the FIM under coarsening tracks the information lost about microscopic

details in these physics models. In this information geometry picture of universality, the high

dimensional parameter space manifold of systems near Ising critical points collapses onto a two

dimensional manifold when its observables are coarsened. This analysis completes what might

be seen as a trivial step in RG arguments for universality—demonstrating that nearness in ef-

fective model space implies indistinguishability of coarsened observables. The mapping from

parameter space distance to metric distance in the space of distinguishability clarifies some con-

fusing points. For example, while FIM distinguishability along relevant parameter directions

remain roughly fixed under coarsening, their parameter space distance appears to grow in a

usual RG picture. Similarly considering an enlarged hypothetical parameter space likely ex-

plains why many models with sloppy FIMs, for example in systems biology, can be predictive

even when important components are entirely absent from their microscopic models.
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7 Simulation details

As described above, M = 10, 000–100, 000 independent members from each ensemble x
p

are

generated using the standard Wolff algorithm (40) implemented on 64 ⇥ 64 periodic square

lattices, and are used to calculate the FIM before coarsening.

A variation of the ‘Compatible Monte Carlo’17 method introduced in (24) was employed to

generate members of the coarse-grained ensemble defined by equation S36. In this method, a

Monte Carlo chain is run and any move proposing a switch to a configuration x0
p,r

for which

Cn

(x0
p,r

) 6= Cn

(x
p

) is rejected. For the mapping Cn

(x
p

) = Cn

(x
p,r

), the simplest implementa-

tion equilibrates using Metropolis moves by proposing only the spins not in level n. Additional

tricks to speed up convergence are described below.

Consider the task of generating a random member x0
p,r

for a given x
p

at level 1. Because the

spins which are free to flip only couple with fixed spins, each one can be chosen independently.

As such, choosing each free spin according to its heat bath probability generates an uncorrelated

member x
p,r

of the ensemble defined by x
p

in a single step. This idea can be further exploited

to exactly calculate the contribution to a metric element at level 1 from a level 0 configuration

x. In particular, replacing all of the spins that are not in level 1 with their mean field values

defined by s̃
i,j

(x) = {s
i,j

}
C

n(x) leads to

{�
↵�

}
C

n(x) =

P
i,j

s̃
i,j

(x)s̃
i+↵,j+�

(x),

{�
h

}
C

n(x) =

P
i,j

s̃
i,j

.
(S43)

It is therefore possible to exactly calculate the level 1 quantities {�
µ

}
C

1(x){�⌫

}
C

1(x) for any

microscopic configuration x and the corresponding checkerboard configuration C1
(x). The

17Ron, Swendsen and Brandt used this technique to generated large equilibrated ensembles close to the critical
point, essentially by starting from a small ‘coarsened’ lattice and iteratively adding layers to generate a large
ensemble.
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metric at level 1 can now be written

g1
µ⌫

=

1
M

2�M

MP
p,q=1,p 6=q

⇣
{�

µ

}
C

1(xp)
{�

⌫

}
C

1(xp)
� {�

µ

}
C

1(xp)
{�

⌫

}
C

1(xq)

⌘
. (S44)

Beyond level 1 it becomes necessary to use Compatible Monte Carlo. Because of the inde-

pendence of free spins at level 1, spins at all levels n � 1 only interact with spins that are

already absent at level 1. Therefore, the spins that are free at level 1 (termed the red sites of the

checkerboard) are left integrated out. The partition function for a level 1 configuration is most

conveniently written in terms of the number of up neighbors, nup

i,j

that each red site has

log

˜Z(C1(x)) =

P
i,j not in level 1

log (z(nup

i,j

)),

z(nup

) = cosh ((�J)(2� nup

)),

(S45)

Additional spins that are not integrated out at level n are flipped using a heat bath algorithm

with the ratio of partition functions in an ‘up’ vs ‘down’ configuration used to determine the

transition probability. The probability of a spin (at level � 2) transitioning to ’up’ after being

proposed from the down state is given by zup
i,j

/(zup
i,j

+ zdown

i,j

) with

zup
i,j

=

P
{k,l} n.n. of {i,j}

z(nup

k,l

+ 1),

zdown

i,j

=

Q
{k,l} n.n. of {i,j}

z(nup

k,l

).
(S46)

Equilibration is fast as there are effectively no correlations larger than the spacing between fixed

spins at level n. This allows generating an ensemble of lattice configurations at level 1, condi-

tioned on the system coarsening to an arbitrary configuration at any level n > 1. Equation S37

is thus slightly modified to the following which was used to make fig. 3 for data at level 2 and
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higher

gn
µ⌫

=

1
(M)(M 02�M

0)

q=M r,s=M

0P
q,r,s=1r 6=s

⇣
{�

µ

}
c

1(x0
q,r){�⌫

}
c

1(x0
q,s)

� 1
M�1

MP
p=1 p 6=q
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µ

}
c
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q,r){�⌫

}
c

1(x0
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⌘

(S47)
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Appendix A

Here we discuss the way the eigenvalues of the FIM scale near the Ising critical point, deriving

the results quoted in equation S30. Our formula for the FIM is given by

gs
µ⌫

= A
P
↵,�

(

@u

↵

@✓

µ
@u

�

@✓

⌫ )(
@

@r

↵
@

@r

�U)⇠y↵+y��d

= J↵

µ

ĝs
↵�

J�

⌫

(S48)

where ĝs
↵�

is the metric tensor in the scaling variable coordinates u↵

(

~✓) for which the renormalization-

group flows expand by a factor by↵ , and J�

⌫

= @u�/@✓⌫ is the Jacobian transforming the natural

coordinates ✓⌫ to the scaling variable coordinates. Our job is to show that the ordered eigenval-

ues �s

i

of gs scale like

�s

i

⇠ A⇠2yi�d (S49)

(equation S30). To do so, we first demonstrate that the eigenvalues ˆ�
i

of the FIM ĝs in scaling

variable coordinates satisfies this bound, and then show that this scaling is preserved by the

transformation J to bare coordinates.

We make use of Weyl’s inequality for matrix eigenvalues, which implies that if B and M
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are real, symmetric matrices and B �M is nonnegative definite, then each ordered eigenvalue

of B is greater than or equal to the corresponding one of M . Let us write

ĝs
↵�

= A⇠�d

✓
@

@r↵
@

@r�
U
◆
⇠y↵+y�

= A⇠�dEME (S50)

where M
↵�

= @2U/@r↵@r� and E
�⇢

= �
�⇢

⇠y� . This form of ĝs is similar to that of matrices

studied in (12).

Let C be the maximum eigenvalue of M , and let B
↵�

= C�
↵�

, so in particular B � M is

nonnegative definite, and hence W T

(B �M)W � 0 for any vector W .

Conclusion: (A ⇠�dEBE � ĝs) is nonnegative definite, and thus ĝs has sorted eigenvalues

ˆ�
i

 CA⇠2yi�d.

Argument: Because ĝs = A⇠�dEME, for any vector V ,

V T

(A⇠�dEBE � ĝs)V = V T

(A⇠�dE(B �M)E)V = A⇠�dW T

(B �M)E)W � 0, (S51)

where W = EV = V E. Since B
↵�

= C�
↵�

and E
↵�

= ⇠y↵�
↵�

are diagonal, the sorted

eigenvalues of A⇠�dEBE are just CA⇠2yi�d, which by Weyl’s inequality bound the sorted

eigenvalues of ĝs.

We now need to transform from the scaling coordinates u↵ to the original coordinates ✓⌫ .

The mapping from scaling variable to bare coordinates is non-orthogonal. Let the eigenvector

of ĝs corresponding to ˆ�
i

be v̂
i

. Each scaling-coordinate eigenvector transforms to a vector in

parameter space,

V i

µ

=

X

↵

v̂↵
i

J↵

µ

=

X

↵

v̂↵
i

@u↵

@✓µ
. (S52)

The V is are neither orthogonal nor normalized. The metric in parameter space can be written
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as:

gs
µ⌫

=

1X

i=1

ˆ�
i

V i

µ

V i

⌫

(S53)

Conclusion: The sorted eigenvalues of gs, the FIM matrix in the original coordinates, scale as

�
i

⇠ A⇠2yi�d.

Argument: Consider the truncated version of this matrix formed by adding just the first N

contributions:

gs,N
µ⌫

=

NX

i=1

ˆ�
i

V i

µ

V i

⌫

. (S54)

It is positive semidefinite, with rank N . Also, gs,N+1 � gs,N is nonnegative definite, so Weyl’s

inequality tells us that the sorted eigenvalues of gs,N+1 are each greater than or equal to those

of gs,N , �i,N+1 > �i,N . As traces of matrices sum, we also have that
P

i

�i,N+1 � �i,N

=

ˆ�
N+1|V N+1|2. This implies that all eigenvalues must increase, with none increasing by more

than ˆ�
N+1|V N+1|2. As the mapping from parameter space to scaling variables is analytic at the

critical point, the normalization factor |V |2 is order one (does not diverge as ⇠ ! 1). Hence

the eigenvalue �
i

in parameter space is a sum of positive terms ⇠ ˆ�
j

for j � i. Since by the

Lemma ˆ�
j

 CA⇠2yj�d, as ⇠ ! 1 the dominant term will be ˆ�
i

, so �
i

⇠ A⇠2yi�d.

27



10–4

10–2

100

10–6

Ei
ge

nv
al

ue
s

Relaxation
oscillation

Circadian
rhythm

Variational
wave function

Particle
accelerator

Fig. S1. Normalized eigenvalues of the Fisher Information Matrix (FIM) for four models.

The ‘Relaxation oscillation’ model is a modified Van der Pol system taken from (28). Eigen-
values of the genetic network describing ‘Circadian rhythm’ model (29) are calculated in (11).
‘Variational wave function’ eigenvalues are taken from Quantum Monte Carlo simulations as
Jastrow parameters are varied (12). ‘Particle accelerator’ is a model of beam shape simulated
using the Tool for Accelerator Optics (30) as discussed briefly in this supplement. Only the first
six decades for each set are shown. Additional examples are in fig. 1.
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Fig. S2. Eigenvalues of the FIM versus J/J
c

. The enlarged 13 parameter Ising model of
size L = 64 is described in the text. Magnetic field h is taken to be zero. Two eigenvalues
become large near the critical point, each diverging with characteristic exponents describing
the divergence of the susceptibility and specific heat respectively. The other eigenvalues vary
smoothly as the critical point is crossed. Furthermore they take a characteristic scale determined
by the system size and are not widely distributed in log. (In the phase separated region, �J >
�J

c

we use the connected correlation function in calculating g00. This corresponds to calculating
eigenvalues in ‘infinitesimal field’. It allows calculation of the FIM in the phase but arbitrarily
close to the phase boundary at which there is a net spontaneous magnetization. Without this
the FIM would have one spuriously large eigenvalue, quantifying the large symmetry breaking
affect of an arbitrarily small applied field.)
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