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Biological and engineered systems operate by coupling function to the transfer of heat and/or particles
down a thermal or chemical gradient. In idealized deterministically driven systems, thermodynamic control
can be exerted reversibly, with no entropy production, as long as the rate of the protocol is made slow
compared to the equilibration time of the system. Here we consider fully realizable, entropically driven
systems where the control parameters themselves obey rules that are reversible and that acquire
directionality in time solely through dissipation. We show that when such a system moves in a directed
way through thermodynamic space, it must produce entropy that is on average larger than its generalized
displacement as measured by the Fisher information metric. This distance measure is subextensive but
cannot be made small by slowing the rate of the protocol.
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It is generally believed that the fundamental laws of
physics preserve phase space volume and are almost the
same in reverse [1]. However, the macroscopic world with
which we interact is dominated by biological and engi-
neered machines that are dissipative and strongly break
time reversibility; although their microscopic components
obey the phase space volume preserving laws of physics,
they couple movement to the production of entropy, leading
them to move more often than not in a particular direction.
The macroscopic engines ubiquitous in engineered systems
are sufficiently large and dissipative as to rarely move in
reverse. However, the processive but stochastic molecular
motors common in biology do indeed take frequent steps
backwards [2–7], reminding us of the entropic and neces-
sarily stochastic underpinnings of their directed motion.
How much entropy must be produced to ensure that a

thermodynamic system moves forward? Most analysis of
this question assumes that the system is driven by changes
in control parameters λμ (e.g., the pressure in a Carnot
engine), whose dynamics are external to the problem. As
these control parameters are moved deterministically, the
system state x changes stochastically and, on average, the
total entropy of the system and its coupled heat bath(s)
increases. However, as a deterministic protocol is made
infinitely slow, it becomes thermodynamically reversible,
producing no entropy. In this adiabatic limit, a deterministic
Carnot engine can run with arbitrarily small dissipation.
The aim of this Letter is to present a new bound that applies
to fully realizable, entropically driven systems, where all
components obey microscopic reversibility, acquiring
directionality in time only through dissipation. We show
that controlling such a system entails a finite entropic cost
that cannot be removed by lengthening the time of the
protocol. A fully realizable Carnot engine must dissipate a
finite but subextensive amount of entropy in every cycle.

The last two decades have seen enormous progress on
understanding deterministically driven systems, with sur-
prising equalities applying to ensemble averages of entropy
production [8] and statistical properties of microscopic
trajectories [9]. In addition, new bounds constrain the
entropy production associated with finite time protocols.
Using arguments from linear response, Sivak and Crooks
[10] showed that any protocol starting at ~λ0 and ending at
~λf, to be completed in time tmax must dissipate at least

hΔStoti ≥
~L2ð~λ0; ~λfÞ

tmax
þO

�
1

t2max

�
ð1Þ

entropy (in units where Boltzmann’s constant kB ¼ 1).

Here ~Lð~λ0; ~λfÞ is the geodesic distance between initial
and final control parameters in the metric space where
infinitesimal length d~l between λ and λþ dλ is given by
d~l2 ¼ ~gμνðλÞdλμdλν, where here and throughout repeated
indices are summed. ~g is a “friction tensor” defined by

~gμνðλÞ ¼
Z

∞

0

dth½Φμð0Þ − hΦμiλ�½ΦνðtÞ − hΦνiλ�iλ; ð2Þ

where ΦμðxÞ is the conjugate force to λμ, entering the
Hamiltonian through a term −λμΦμðxÞ. Crooks [11] and
Burbea and Rao [12] considered dissipation in related
protocols in which thermodynamic parameters are moved
in N discrete steps, with the system coming fully to
equilibrium between each step. In this case the dissipation
is bounded by

hΔStoti ≥
L2ð~λ0; ~λfÞ

nsteps
þO

�
1

n2steps

�
; ð3Þ
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where the tilde-free Lð~λ0; ~λfÞ is the geodesic distance
between initial and final control parameters in the metric
space defined by the Fisher information matrix (FIM). The
FIM, gμν ¼ h∂μ∂ν log½pðxÞ�i measures statistical distin-
guishability between nearby models [13,14] and in this
parametrization takes the form

gμνðλÞ ¼ hΦμΦνiλ − hΦμiλhΦνiλ ¼
∂hΦμiλ
∂λν : ð4Þ

In each of these deterministically driven cases, the
entropy production can be reduced to an arbitrarily small
value by taking the limit where either tmax → ∞ or
nsteps → ∞. Here we consider fully realizable systems,
where the control parameters themselves obey dynamics
that obey time reversal invariance, moving forward more
often than backwards only due to the increased volume of
phase space associated with movement in that direction. In
this entropically driven limit, there is an intrinsic cost
associated with thermodynamic control, which, even as the
procedure is made arbitrarily slow and fine grained remains
bounded by

hΔStoti ≥ 2Lð~λ0; ~λfÞ; ð5Þ

where L is the geodesic distance in the same metric space
of the FIM defined in Eq. (4). Demonstrating this bound
and discussing its implications are the subject of this Letter.
Before looking at the more general case, consider

a system with particles interacting through some
Hamiltonian HsysðxÞ, where x denotes the microstate
of the system (see Fig. 1). Particle number, NðxÞ is a
function of x and at time t the system may exchange
particles with particle reservoir iðtÞ at chemical potential
λi=β and energy with a thermal bath at inverse temperature
β. After reaching equilibrium with reservoir i, the proba-
bility of finding the controlled system in state x is given by
an appropriate Boltzmann distribution,

PiðxÞ ¼
exp ½−βHsysðxÞ þ λiNðxÞ�

Zi
: ð6Þ

With these definitions, Ωi ¼ − logðZiÞ=β is the grand
potential, and the Helmholtz free energy is given by

Fsys;i ¼ hHsysii − Ssys;i=β ¼ Ωi þ λihNii=β; ð7Þ

where hNii ¼ ∂ logðZiÞ=∂λ. We are interested in changes
to the combined entropy, Ssysþ ¼ Ssys þ Sbath þ

P
iSi,

where ΔSbath ¼ −βΔE so that ΔSbath þ ΔSsys ¼ −βΔF
and ΔSi ¼ λiΔNi. We will also need the FIM which can
be expressed as [see Eq. (4)]:

gi ¼ hN2ii − hNi2i ¼
∂hNii
∂λ ¼ −β

∂2Ωi

∂λ2 ; ð8Þ

where the tensor indices of gi are omitted as the system
contains only a single parameter.
In addition to dynamics in which the system comes to

equilibrium with reservoir i, our system may also discon-
nect from reservoir i and reconnect to reservoirs iþ 1 or
i − 1, that are held at λi�1 ¼ λi � dλ. Let us first consider
dynamics in which these steps happen in the forward and
reverse directions with equal rates. In this directionless
steady state, the complete system is not in thermal
equilibrium. In fact, as it diffuses back and forth, the
controlled system will tend to move particles down their
concentration gradients. Consider a sequence in which the
system starts in equilibrium connected to reservoir i, hops
to reservoir iþ 1, comes to equilibrium there, and then
hops back to reservoir i where it again comes to equilib-
rium. At the end of this sequence, the entropy of the thermal
bath and controlled system remain unchanged. However,
on average, particles have been transferred from reservoir
iþ 1 to reservoir i; during the forward hop the system
carries, on average, hNii particles while in the backwards
trajectory it carries hNiiþ1 ¼ hNii þ gidλþOðdλÞ2 par-
ticles [see Eq. (8)].
In fact, a hop in either direction produces, on average,

total entropy giðdλÞ2=2. Consider a sequence in which the
systems hops from bath i to bath i� 1, where it comes to
equilibrium. Expanding the Helmholtz free energy [Eq. (7)]
in dλ, we find that βΔFsys ¼ �giλidλþ ½ðgi=2Þ þ ðλi=2Þ×
ð∂2hNii=∂λ2Þ�ðdλÞ2 þOðdλÞ3. The entropy of reservoir

FIG. 1. A fully realizable system consisting of a controlled
system of interest with Hamiltonian Hsys, a series of particle
reservoirs i each with chemical potential λi=β, and an unspecified
source of bias entropy δSbias. The controlled system is also in
contact with a thermal bath at inverse temperature β with which it
can exchange energy (not shown). At a fast time scale the system
exchanges particles with bath i, and at a much slower time scale it
hops from bath i to i� 1, producing�δSbias entropy. When δSbias
is small, the system tends to drift, hopping both forwards and
backwards, during which it moves particles down their chemical
gradient, dissipating additional entropy. As argued in the text,
average forward movement requires a minimum entropy pro-
duction that cannot be removed either by making dλ ¼ λiþ1 − λi
or δSbias small.

PRL 115, 260603 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2015

260603-2



i� 1 also changes. On average, hNiiþ1 − hNii particles
flow out of it, changing its entropy by ΔSi�1 ¼
ðλi � dλÞ½�gidλþ 1

2
ð∂2hNii=∂λ2ÞðdλÞ2 þOðdλÞ3�. Thus,

during this procedure,

hΔSsysþii→i�1
¼ −βΔF þ

X
i

ΔSi ¼
gi
2
ðdλÞ2 þOðdλÞ3:

ð9Þ

So far this system has no well-defined direction of
operation, despite its dissipative nature. To bias towards
movement in the forward direction, a step from one particle
reservoir to the next may couple to the dissipation of an
unspecified source of biasing entropy δSbias, so that a step
from i → iþ 1 is more likely than one in the reverse
direction, with the forward and reverse rates r�, as well as
the average number of forward and reverse hops, n� related
by [9,15]:

hn−i ¼ hnþi expð−δSbiasÞ: ð10Þ

Microscopically, δSbias could arise from many sources,
provided they produce entropy. For example, forward
movement might be accompanied by the transfer of a
fixed amount of energy down a thermal gradient as in an
engine, or of particles down a chemical gradient. It is
important to note that the reverse step does indeed reduce
the entropy of the world by δSbias.
Let us now consider the average dissipation associated

with moving system parameters from λ0 to λf, over a
trajectory through which gi ¼ g is constant so that
Lðλ0; λfÞ ¼ ffiffiffi

g
p jλf − λ0j. The total average dissipation

associated with this trajectory is given by the sum of bias
related dissipations Sbias ¼ ðnþ − n−ÞδSbias and dissipa-
tions associated with hops, ΔSsysþ:

hΔStoti ¼ hnþ − n−iδSbias þ hnþ þ n−ihΔSsysþi: ð11Þ

In any trajectory which moves from λ0 to λf,
nþ − n− ¼ ðλf − λ0Þ=dλ. Combining with Eqs. (9) and
(10) the total average dissipation is given by

hΔStoti ¼ Lðλ0; λfÞ
�

δSbiasffiffiffiffiffiffiffiffiffiffiffiffiffi
gðdλÞ2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gðdλÞ2

p
2 tanhðδSbias=2Þ

�
:

ð12Þ

An idealized system could have any stepsize dλ and any
δSbias. Optimizing over these to find the values that
minimize the dissipation we find that

gðdλoptÞ2 ¼ ðδSoptbiasÞ2; δSoptbias → 0; hΔSopttot i ¼ 2Lðλ0; λfÞ;
ð13Þ

demonstrating Eq. (5) for this system.

To achieve the bound, the system must be in the
continuum limit where dλ and δSbias are small.
Furthermore, if δSbias >

ffiffiffi
g

p
dλ then entropy is produced

primarily in breaking the time-reversal invariance of the
control parameters, though the work done on the system
can be made arbitrarily close to the change in free energy.
On the other hand, if δSbias <

ffiffiffi
g

p
dλ then most entropy is

produced in futile cycles in which the system moves back
and forth in λ space. Insight into the optimum parameters
can be gained by considering the “proper” velocity and
diffusion coefficient where proper distance is measured by
the FIM (where for generality we have added back indices
on g):

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν

∂hλμi
∂t

∂hλνi
∂t

q
;

D ¼ 1
2
gμν

∂½λμλν�
∂t ;

ð14Þ

where square brackets denote a second cumulant. It is
important to note that these each have dimensions of
inverse time since proper distance as measured by the
FIM is dimensionless. For this system, in the continuum
limit, V ¼ ffiffiffi

g
p

rþdλδSbias, while D ¼ grþðdλÞ2. As such,
the optimum occurs when D ¼ V.
These results also hold for a generalized system with

multiple control parameters λμ, which could be baths of
different particles, temperature, displacements, or other
quantities conjugate to a generalized force. Taking a
continuum trajectory, we assume that the controlled
system will be moved through a one-dimensional track
~λðτÞ, with motion along the track consisting of (one-
dimensional) diffusion and drift, microscopically arising
from dynamics analogous to those considered in the

one dimensional example. At a particular point ~λðτÞ,
using the definitions provided in Eq. (14), V ¼
ðdhτi=dtÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνð∂λμ=∂τÞð∂λν=∂τÞ
p

and D ¼ 1
2
ðd½τ2�=dtÞ×

½gμνð∂λμ=∂τÞð∂λν=∂τÞ�. Similar analysis shows that in this
multiparameter continuum system, entropy is produced at
the following rate:

dhSsysþi
dt

¼ D;
dhSbiasi

dt
¼ V2=D; ð15Þ

where Sbias and Ssysþ are defined as before. The average
amount of time it takes to traverse a segment of length
dτ is given by hdti ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνð∂λμ=∂τÞð∂λν=∂τÞ
p

dτ=V, so
that the dissipation associated with movement along
a segment of length dτ is given by hdStoti ¼ ðD=V þ
V=DÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνð∂λμ=∂τÞð∂λν=∂τÞ
p

dτ. This is minimized when
Dopt ¼ Vopt so that the minimum average dissipation
associated with a stochastic protocol that on average moves

from ~λ0 to ~λf along path ~λðτÞ is given by
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hΔSopttot i ¼ 2

Z
τf

τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν

∂λμ
∂τ

∂λν
∂τ

r
dτ ≥ 2Lð~λ0; ~λfÞ: ð16Þ

Note that the first equality defines (twice) the path length.
Thus, the inequality below follows from the definition of L
as the length of the minimum length (geodesic) path.

Equality is achieved only when ~λðτÞ is the minimum length

geodesic connecting ~λ0 with ~λf.
It is interesting to compare the bound presented here with

those found by Crooks and Sivak [Eqs. (1) and (3) and
Refs. [10,11], see Refs. [16,17] for detailed explorations of
particular systems], and related bounds for nonequilibrium
steady states [18]. Each of these previous bounds roughly
correspond to limits in which δSbias is infinite, leading to a
deterministic protocol, but where the process leading to that
bias is ignored as a source of dissipation. Each of these
previous bounds can be made small by lengthening the time
or number of steps associated with a protocol. By contrast,
neither the time, nor the number of steps enter the bound
presented here.
The bounds presented by Crooks and Sivak [10,11] also

scale differently with system size. Both the FIM defined in
Eq. (4) and the metric introduced in Ref. [10] and Eq. (2)
are extensive, scaling linearly with system size in the
thermodynamic limit. However, geodesic lengths scale as
the square root of the metric. As the geodesic lengths are
squared in Eqs. (1) and (3), these bounds are extensive in
the precise sense that controlling two identical and uncor-
related systems in tandem requires twice the dissipation. By
contrast, the bound presented here scales as the square root
of the system size; two identical systems limited by this
bound could be controlled in tandem with only

ffiffiffi
2

p
as much

dissipation. Thus, this bound becomes less important in the
thermodynamic limit—it is more likely to be relevant for
molecular machines than for large engineered systems,
where extensive though finite time bounds [10] are more
likely to be relevant.
The bound presented here is not in contradiction with

the impressive array of experiments verifying the
Jarzynski equality and Crooks relations. In these exper-
imental tests, a control parameter is typically manipulated
in the nearly deterministic regime. For example, a bead
attached to DNA or RNA is manipulated according to a
predetermined force protocol by a laser operating as an
optical tweezer. The work done by the bead on the
nucleotide polymer has been shown to obey both the
Jarzynski equality [19] and Crooks relations [20]. It
would seem that, as a corollary, these experiments verify
the dissipationless adiabatic limit for quasideterministi-
cally driven systems. However, in these experimental
paradigms the relatively enormous dissipation associated
with the laser itself is ignored. In the framework of this
Letter, this limit corresponds to the case where δSbias is
very large, but where its contribution is ignored.

It remains to be seen whether this bound meaningfully
constrains the operation of real biological systems. Biology
often utilizes molecular scale motors for which subexten-
sive contributions to energy expenditure could be relevant.
In muscle fibers, contraction is initiated by the binding of
calcium to myosin, which then hydrolyze ATP to perform
mechanical work. Calcium binding acts much as δSbias does
here, and biology spends substantial energy maintaining a
low intracellular calcium concentration in resting cells. As
would be required to approach this bound, many biological
motors are able to work in reverse, synthesizing ATP when
pulled too hard [21]. However, muscles do not seem to take
advantage of this property, hydrolyzing ATP during both
extension and contraction under load, and operating far
from the reversible regime [22]. Indeed, in many contexts
other considerations like speed, reliability, and the con-
straints of chemistry [23] may matter more than energetic
efficiency. England recently used nonequilibrium argu-
ments to estimate the energetic cost of cellular replication,
arguing that the dissipation required to rapidly build stable
molecules dominates a bacterium’s energy budget [24].
Intriguingly, biological systems do seem to seek out highly
cooperative, nearly critical states [25], in particular in their
cell membrane [26]. These regions of thermodynamic
space have, among other properties, a high negative
Ricci curvature [13], implying “closeness” to a much larger
proper volume of distinct membrane compositions and
corresponding physical properties.
Further work will shed light on the extent to which this,

or analogous bounds, apply to a larger class of fully
realizable systems that do not contain any unphysical,
deterministic, elements. This bound would seem to apply to
idealized logically reversible computing schemes [27] that
have been used to argue against [28] an intrinsic energetic
cost associated with the mechanical manipulations under-
lying computation, leaving only memory erasure as fun-
damentally requiring dissipation [29]. In addition this
bound constrains the efficiency of finite size heat engines.
A Carnot cycle operating between temperatures Th and Tc
with pressures P2 and P1 bounding the high temperature
portion would have to dissipate entropy greater than
ΔStot ≥ 4

ffiffiffiffi
N

p
logðP2=P1Þ þ 4

ffiffiffiffiffiffiffi
3N

p
logðTh=TcÞ in every

cycle. Note the
ffiffiffiffi
N

p
dependence of this dissipation—in

the adiabatic limit an idealized deterministic system would
be dissipationless, producing no net entropy but trans-
ferring an extensive Qh ¼ NTh logðP2=P1Þ heat out of a
hot bath and performing W ¼ NðTh − TcÞ logðP2=P1Þ
work. For fully realizable systems, any directed change
must be driven by a finite, though subextensive, production
of entropy, even if change is made slowly.
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